首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyhydroxyalkanoates (PHAs) are biodegradable polymers which are considered as an effective alternative for conventional plastics due to their mechanical properties similar to the latter. However, the widespread use of these polymers is still hampered due to their higher cost of production as compared to plastics. The production cost could be overcome by obtaining high yields and productivity. The goal of the present research was to enhance the yield of polyhydroxybutyrate (PHB) with the help of two simple fed-batch cultivation strategies. In the present study, average batch kinetic and substrate limitation/inhibition study data of Alcaligenes latus was used for the development of PHB model which was then adopted for designing various off-line nutrient feeding strategies to enhance PHB accumulation. The predictive ability of the model was validated by experimental implementation of two fed-batch strategies. One such dynamic strategy of fed-batch cultivation under pseudo-steady state with respect to nitrogen and simultaneous carbon feeding strategy resulted in significantly high biomass and PHB concentration of 39.17 g/L and 29.64 g/L, respectively. This feeding strategy demonstrated a high PHB productivity and PHB content of 0.6 g/L h and 75%, respectively, which were remarkably high in comparison to batch cultivation. The mathematical model can also be employed for designing various other nutrient feeding strategies.  相似文献   

2.
Application of engineered bacteria expressing nitrile hydratase for the production of amide is getting tremendous attention due to the rapid development of recombinant DNA technique. This study evaluated the effect of 3-cyanopyridine concentrations on nicotinamide production using recombinant Escherichia coli strain (BAG) expressing high-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1, and established proper process of whole-cell catalysis of 3-cyanopyridine and high cell-density cultivation. The process of substrate fed-batch was applied in the production of nicotinamide, and the concentration of product reached 390 g/L under the condition of low cell-density. After the high cell-density cultivation of BAG in 5 L bioreactor, the OD600 of cell attained 200 and the total activity reached 2813 U/mL. Different high density of BAG after fermentation in the tank was used to catalyze 3-cyanopyridine, and the concentration of nicotinamide reached to 508 g/L in just 60 min. The productivity of BAG was 212% higher than that of R. rhodochrous J1, and it is possible that BAG is able to achieve industrial production of nicotinamide.  相似文献   

3.
The yeast Ogataea thermomethanolica has recently emerged as a potential host for heterologous protein expression at elevated temperature. To evaluate the feasibility of O. thermomethanolica as heterologous host in large-scale fermentation, constitutive production of fungal phytase was investigated in fed-batch fermentation. The effect of different temperatures, substrate feeding strategies, and carbon sources on phytase production was investigated. It was found that O. thermomethanolica can grow in the temperature up to 40 °C and optimal at 34 °C. However, the maximum phytase production was observed at 30 °C and slightly decreased at 34 °C. The DOT stat control was the most efficient feeding strategy to obtain high cell density and avoid by-product formation. The table sugar can be used as an alternative substrate for phytase production in O. thermomethanolica. The highest phytase activity (134 U/mL) was obtained from table sugar at 34 °C which was 20-fold higher than batch culture (5.7 U/mL). At a higher cultivation temperature of 38 °C, table sugar can be used as a low-cost substrate for the production of phytase which was expressed with an acceptable yield (85 U/mL). Lastly, the results from this study reveal the industrial favorable benefits of employing O. thermomethanolica as a host for heterologous protein production.  相似文献   

4.
Production of fumaric acid from alkali-pretreated corncob (APC) at high solids loading was investigated using a combination of separated hydrolysis and fermentation (SHF) and fed-batch simultaneous saccharification and fermentation (SSF) by Rhizopus oryzae. Four different fermentation modes were tested to maximize fumaric acid concentration at high solids loading. The highest concentration of 41.32 g/L fumaric acid was obtained from 20 % (w/v) APC at 38 °C in the combined SHF and fed-batch SSF process, compared with 19.13 g/L fumaric acid in batch SSF alone. The results indicated that a combination of SHF and fed-batch SSF significantly improved production of fumaric acid from lignocellulose by R. oryzae than that achieved with batch SSF at high solids loading.  相似文献   

5.
Reducing the viscosity of molasses environmentally and selectively removing the harmful ingredients for microbes are the keys to promoting the bioavailability of molasses. A simple and environmental in situ pretreatment method integrating surfactants and alkali was developed to reduce the viscosity of molasses prior to l-lysine production using Escherichia coli ZY0217. Adding activated carbon and modified orange peel based on the in situ pretreatment process effectively removed pigments and excessive zinc in the molasses and also significantly increased the cell growth and l-lysine yield from E. coli ZY0217. The experimental results showed that a mixture of secondary alkane sulfonate, an anionic surfactant, and HodagCB-6, a non-ionic surfactant, effectively reduced the viscosity of the molasses more so than any single surfactant. When the surfactant mixture was added at a concentration of 0.04 g/L to the molasses, the ω value was 0.4, and when ammonia was added at 0.6 %, the lowest viscosity of 705 mPa?·?s was obtained. Further, 91.5 % of the color and 86.68 % of the original levels of zinc were removed using an activated carbon and modified orange peel treatment on the molasses with the lowest viscosity, which further promoted cell growth and l-lysine production. In the fed-batch cultivation process, the l-lysine concentration achieved using a constant-speed feeding strategy was 45.89 g/L, with an l-lysine yield of 27.18 %, whereas the l-lysine yield from untreated molasses was only 10.13 %. The increase in l-lysine yield was related to the reduced viscosity and the detoxification of the molasses. Lastly, the pretreatment was found to significantly enhance the conversion of sugars in the molasses to l-lysine.  相似文献   

6.
2-Keto-d-gluconic acid (2KGA) is mainly used for industrial production of erythorbic acid, a food antioxidant. In this study, a 2KGA producing strain JUIM02 was firstly identified as Arthrobacter globiformis by morphological observation and 16S rDNA sequencing. The 2KGA synthetic capacity of A. globiformis JUIM02 was evaluated by both fermentation and bioconversion, with 180 g/L dextrose monohydrate as substrates, in shake flasks and 5 L fermenters. For fermentation, 2KGA titer, yield, molar yield, and productivity of JUIM02 reached 159.05 g/L, 0.97 g/g, 90.18%, and 6.63 g/L/h in 24 h. For non-sterile and buffer-free bioconversion by free resting cells (~?3.2 g/L dry cell weight) of JUIM02, these data were 172.96 g/L, 1.06 g/g, 98.07%, and 5.41 g/L/h in 32 h. Moreover, JUIM02 resting cells could be repeatedly used. Resting cells stored at 4 °C within 30 days showed stable bioconversion capacity, with 2KGA titers ≥?171.50 g/L, yields ≥?1.04 g/g, and molar yields ≥?97.24%. The 2KGA synthetic pathway in A. globiformis, which was rarely reported, was also speculated similar to Pseudomonas and verified preliminarily. In conclusion, A. globiformis JUIM02 is a promising 2KGA industrial-producing strain suitable for various production methods and a suitable object for 2KGA metabolism research of A. globiformis.  相似文献   

7.
Microbial oils are among the most attractive alternative feedstocks for biodiesel production. In this study, a newly isolated yeast strain, AM113 of Papiliotrema laurentii, was identified as a potential lipid producer, which could accumulate a large amount of intracellular lipids from hydrolysates of inulin. P. laurentii AM113 was able to produce 54.6% (w/w) of intracellular oil in its cells and 18.2 g/l of dry cell mass in a fed-batch fermentation. The yields of lipid and biomass were 0.14 and 0.25 g per gram of consumed sugar, respectively. The lipid productivity was 0.092 g of oil per hour. Compositions of the fatty acids produced were C14:0 (0.9%), C16:0 (10.8%), C16:1 (9.7%), C18:0 (6.5%), C18:1 (60.3%), and C18:2 (11.8%). Biodiesel obtained from the extracted lipids could be burnt well. This study not only provides a promising candidate for single cell oil production, but will also probably facilitate more efficient biodiesel production.  相似文献   

8.
Lysozymes are known as ubiquitously distributed immune effectors with hydrolytic activity against peptidoglycan, the major bacterial cell wall polymer, to trigger cell lysis. In the present study, the full-length cDNA sequence of a novel sea urchin Strongylocentrotus purpuratus invertebrate-type lysozyme (sp-iLys) was synthesized according to the codon usage bias of Pichia pastoris and was cloned into a constitutive expression plasmid pPIC9K. The resulting plasmid, pPIC9K-sp-iLys, was integrated into the genome of P. pastoris strain GS115. The bioactive recombinant sp-iLys was successfully secreted into the culture broth by positive transformants. The highest lytic activity of 960 U/mL of culture supernatant was reached in fed-batch fermentation. Using chitin affinity chromatography and gel-filtration chromatography, recombinant sp-iLys was produced with a yield of 94.5 mg/L and purity of >?99%. Recombinant sp-iLys reached its peak lytic activity of 8560 U/mg at pH 6.0 and 30 °C and showed antimicrobial activities against Gram-negative bacteria (Vibrio vulnificus, Vibrio parahemolyticus, and Aeromonas hydrophila) and Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis). In addition, recombinant sp-iLys displayed isopeptidase activity which reached the peak at pH 7.5 and 37 °C with the presence of 0.05 M Na+. In conclusion, this report describes the heterologous expression of recombinant sp-iLys in P. pastoris on a preparative-scale, which possesses lytic activity and isopeptidase activity. This suggests that sp-iLys might play an important role in the innate immunity of S. purpuratus.  相似文献   

9.
The high demand for renewable energy and increased biodiesel production lead to the surplus availability of crude glycerol. Due to the above reason, the bio-based value addition of crude glycerol into various bioproducts is investigated; among them, microbial lipids are attractive. The present study was dedicated to find the optimal glycerol concentration and carbon/nitrogen (C/N) ratio to produce maximum lipid using Yarrowia lipolytica SKY7. The glycerol concentration (34.4 to168.2 g/L) and C/N ratio (25 to 150) were selected to investigate to maximize the lipid production. Initial glycerol concentration 112.5 g/L, C/N molar ratio of 100, and with 5 % v/v inoculum supplementation were found to be optimum for biomass and lipid production. Based on the above optimal parameters, lipid concentration of 43.8 % w/w with a biomass concentration of 14.8 g/L was achieved. In the case of glycerol concentration, the maximum Yp/s (0.192 g/g); Yx/s (0.43 g/g) was noted when the initial glycerol concentration was 112.5 g/L with C/N molar ratio 100 and inoculum volume 5 % v/v. The glycerol uptake was also noted to increase with the increase in glycerol concentration. At low C/N ratio, the glycerol consumption was found to be high (79.43 g/L on C/N 25) whereas the glycerol consumption was observed to decrease when the C/N ratio was raised to 150 (40.8 g/L).  相似文献   

10.
Whey is a byproduct of the dairy industry, which has prospects of using as a source for production of various valuable compounds. The lactose present in whey is considered as an environmental pollutant and its utilization for enzyme and fuel production, may be effective for whey bioremediation. The dairy yeast Kluyveromyces marxianus have the ability to utilize lactose sharply as the major carbon source for the production of the enzyme. Five strains were tested for the production of the β-galactosidase using whey. The maximum β-galactosidase activity of 1.74 IU/mg dry weight was achieved in whey using K. marxianus MTCC 1389. The biocatalyst was further immobilized on chitosan macroparticles and exhibited excellent functional activity at 35 °C. Almost 89 % lactose hydrolysis was attained for concentrated whey (100 g/L) and retained 89 % catalytic activity after 15 cycles of reuse. Finally, β-galactosidase was immobilized on chitosan and Saccharomyces cerevisiae on calcium alginate, and both were used together for the production of ethanol from concentrated whey. Maximal ethanol titer of 28.9 g/L was achieved during fermentation at 35 °C. The conclusions generated by employing two different matrices will be beneficial for the future modeling using engineered S. cerevisiae in scale-up studies.  相似文献   

11.
With the problems related to chemical methods of pyruvic acid (PA) synthesis, a fast-growing interest has been observed in research aiming at reducing the production cost of PA by applying biotechnological methods. This study aimed to investigate the potential applicability of Yarrowia lipolytica Wratislavia 1.31 yeast strain for valorisation of pure and crude glycerol through the production of industrially desired PA. Conditions required for the effective PA biosynthesis, i.e., pH value, thiamine concentration, agitation, and substrate concentration, were examined in batch and fed-batch cultivation modes. The efficient production of PA occurred under the limitation of thiamine (1 µg L?1) and was stimulated by moderate pH (4.5) and agitation (800 rev min?1) of the culture. Under optimal conditions, Y. lipolytica Wratislavia 1.31 was able to produce 85.2 g L?1 of PA with volumetric productivity of 0.90 g L?1 h?1. The yield of PA biosynthesis reached a high level of 1.03 g g?1. Obtained results confirmed the aptitude of Y. lipolytica yeast to produce high amounts of PA from simple glycerol-containing media. Presented process was very promising and might be considered as an attractive alternative for currently used chemical methods of PA synthesis.  相似文献   

12.
Weissella cibaria RBA12 produced a maximum of 9 mg/ml dextran (with 90% efficiency) using shake flask culture under the optimized concentration of medium components viz. 2% (w/v) of each sucrose, yeast extract, and K2HPO4 after incubation at optimized conditions of 20 °C and 180 rpm for 24 h. The optimized medium and conditions were used for scale-up of dextran production from Weissella cibaria RBA12 in 2.5-l working volume under batch fermentation in a bioreactor that yielded a maximum of 9.3 mg/ml dextran (with 93% efficiency) at 14 h. After 14 h, dextran produced was utilized by the bacterium till 18 h in its stationary phase under sucrose depleted conditions. Dextran utilization was further studied by fed-batch fermentation using sucrose feed. Dextran on production under fed-batch fermentation in bioreactor gave 35.8 mg/ml after 32 h. In fed-batch mode, there was no decrease in dextran concentration as observed in the batch mode. This showed that the utilization of dextran by Weissella cibaria RBA12 is initiated when there is sucrose depletion and therefore the presence of sucrose can possibly overcome the dextran hydrolysis. This is the first report of utilization of dextran, post-sucrose depletion by Weissella sp. studied in bioreactor.  相似文献   

13.
In this study, an extensive screening was undertaken to isolate some amylolytic microorganisms capable of producing bioethanol from starchy biomass through Consolidated Bioprocessing (CBP). A total of 28 amylolytic microorganisms were isolated, from which 5 isolates were selected based on high α-amylase and glucoamylase activities and identified as Candida wangnamkhiaoensis, Hyphopichia pseudoburtonii (2 isolates), Wickerhamia sp., and Streptomyces drozdowiczii based on 26S rDNA and 16S rDNA sequencing. Wickerhamia sp. showed the highest ethanol production (30.4 g/L) with fermentation yield of 0.3 g ethanol/g starch. Then, a low cost starchy waste, potato peel waste (PPW) was used as a carbon source to produce ethanol by Wickerhamia sp. Finally, in order to obtain maximum ethanol production from PPW, a fermentation medium was statistically designed. The effect of various medium ingredients was evaluated initially by Plackett-Burman design (PBD), where malt extracts, tryptone, and KH2PO4 showed significantly positive effect (p value < 0.05). Using Response Surface Modeling (RSM), 40 g/L (dry basis) PPW and 25 g/L malt extract were found optimum and yielded 21.7 g/L ethanol. This study strongly suggests Wickerhamia sp. as a promising candidate for bioethanol production from starchy biomass, in particular, PPW through CBP.  相似文献   

14.
Effective utilization of winter bamboo shoot shell (BSS) is of great interest, since BSS provides a renewable and inexpensive bioresource for the production of biofuels. In this study, an effective combination pretreatment by the sequential aqueous ammonia (25 wt%) extraction at 50 °C for 24 h and LiCl/N,N-dimethyl formamide (LiCl/DMF) (6 wt% of LiCl) pretreatment at 50 °C for 8 h was used for pretreating BSS. SEM, FTIR, and XRD results indicated that combination pretreatment could effectively remove lignin and change the crystal structure of cellulose for promoting enzymatic saccharification. Additionally, significant linear correlations were found about solid recovery-delignification (R 2 = 0.9235), delignification-reducing sugars (R 2 = 0.9552), and delignification-hemicellulose removal (R 2 = 0.9779) during the combination pretreatment. The reducing sugars and glucose from the hydrolysis of 100 g/L pretreated BSS could be obtained at 72.3 and 40.5 g/L, respectively. Using the recovered BSS-hydrolysates containing 20–50 g/L glucose as carbon source, the ethanol yields at 48 h could be obtained at 84.5–86.1% of the theoretical yield. In conclusion, the sequential ammonia extraction and LiCl/DMF pretreatment has high potential application in future.  相似文献   

15.
Pseudostem of the Musa cavendishii banana plant was submitted to chemical pretreatments with acid (H2SO4 2%, 120 °C, 15 min) and with alkali (NaOH 3%, 120 °C, 15 min), saccharified by commercial enzymes Novozymes® (Cellic CTec2 and HTec2). The influences of the pretreatments on the degradation of the lignin, cellulose and hemicellulose, porosity of the surface, particle crystallinity, and yield in reducing sugars after saccharification (Y RS), were established. Different concentrations of biomass (70 and 100 g/L in dry matter (dm)), with different physical differences (dry granulated, crushed wet bagasse, and whole pseudostem), were used. The broth with the highest Y RS among the different strategies tested was evaporated until the concentration of reducing sugars (RS) was to the order of 100 g/L and fermented, with and without prior detoxification with active carbon. Fermentation was carried out in Erlenmeyer flasks, at 30 °C, initial pH 5.0, and 120 rpm. In comparison to the biomass without chemical pretreatment and to the biomass pretreated with NaOH, the acid pretreatment of 70 g/L of dry granulated biomass enabled greater digestion of hemicellulose, lower index of cellulose crystallinity, and higher Y RS (45.8 ± 0.7%). The RS increase in fermentation broth to 100 g/L, with posterior detoxification, presented higher productivity ethanol (Q P = 1.44 ± 0.02 g/L/h) with ethanol yield (Y P/RS) of 0.41 ± 0.02 g/g. The value of Q P was to the order of 75% higher than Q P obtained with the same broth without prior detoxification.  相似文献   

16.
CO2 biofixation was investigated using tubular bioreactors (15 and 1.5 l) either in the presence of green algae Chlorella vulgaris or Nannochloropsis gaditana. The cultivation was carried out in the following conditions: temperature of 25 °C, inlet-CO2 of 4 and 8 vol%, and artificial light enhancing photosynthesis. Higher biofixation were observed in 8 vol% CO2 concentration for both microalgae cultures than in 4 vol%. Characteristic process parameters such as productivity, CO2 fixation, and kinetic rate coefficient were determined and discussed. Simplified and advanced methods for determination of CO2 fixation were compared. In a simplified method, it is assumed that 1 kg of produced biomass equals 1.88 kg recycled CO2. Advance method is based on empirical results of the present study (formula with carbon content in biomass). It was observed that application of the simplified method can generate large errors, especially if the biomass contains a relatively low amount of carbon. N. gaditana is the recommended species for CO2 removal due to a high biofixation rate—more than 1.7 g/l/day. On day 10 of cultivation, the cell concentration was more than 1.7?×?107 cells/ml. In the case of C. vulgaris, the maximal biofixation rate and cell concentration did not exceed 1.4 g/l/day and 1.3?×?107 cells/ml, respectively.  相似文献   

17.
The study was performed to investigate the effects of using cow effluent for the cultivation of Spirulina platensis on its biomass production and cell physiology. S. platensis was cultivated in three different cow effluents (CE) used as cultivation medium during 15 days. CE was prepared using dry cow manures, and it was further modified with supplement of NaNO3 (CEN) and NaNO3 + NaCl (CENS). High nitrate value stimulated chlorophyll-a and total protein content of the cyanobacterium and also biomass production in standards medium (SM) and CEN media. Total carbohydrate content of S. platensis grown in CE media was found to be higher (p < 0.05) than that of SM. Productions of biomass and biochemical compounds by the cyanobacterium grown on the CE and SM media were evaluated by using multivariate approach. Conductivity, oxidation reduction potential (ORP), salinity, pH, and TDS played important role (p < 0.01) in the biochemical composition. As an effective explanatory factor, ORP had a significant positive correlation with H2O2, whereas negatively correlated with chlorophyll-α, biomass production, filament length, and proline. Canonical correspondence analysis proposed that biochemical compounds of S. platensis were not only affected by salinity and nutrition of media but also by pH and ORP. The present study indicated that CEN as a low cost model medium had high potential for the production of biomass by S. platensis with high protein content.  相似文献   

18.
Escherichia coli strains expressing the O-glucosyltransferases UGT73B3 or UGT84B1 were compared for the production of glucosides from quercetin supplied into a defined medium. The formation of quercetin-3-glucoside (Q3G) by UGT73B3 showed a maximum at 33 °C, while the formation of quercetin-7-glucoside by UGT84B1 increased with increasing temperature to 37 °C. The highest concentrations of Q3G were attained by strains having a deletion in the pgi gene-coding phosphoglucose isomerase, which effectively blocked the entry of glucose-6P into the Embden–Meyerhof–Parnas pathway. Formation of Q3G was improved in 1-L controlled bioreactors compared to shake flask cultures, a result attributed to the greater oxygen transfer rate in bioreactors. Under batch conditions with 30 g/L glucose as the sole carbon source, E. coli MEC367 (MG1655 pgi) expressing UGT73B3 generated 3.9 g/L Q3G in 56 h.  相似文献   

19.
Medicinal plants are a significant source of biological active and health protective compounds. Post-harvest treatments can affect, in different ways, the content and biological activity of such compounds. One of the most common post-harvesting methods is drying. In this study, we investigated the effect of drying method on the content of natural pigments (chlorophylls, carotenoids and anthocyanins) and on the antioxidant capacity of two traditionally used herbs, the Melissa officinalis (lemon balm) and the Urtica dioica (stinging nettle) both of them landraces collected from plants grown in Nitra region, West of Slovakia. The freeze-dried samples of both herbs exhibited the highest content of chlorophyll a (7.55 ± 0.13 mg/g dry mass for lemon balm and 9.41 ± 0.17 mg/g dry mass for stinging nettle), chlorophyll b (3.12 ± 0.28 mg/g dry mass for lemon balm and 3.34 ± 0.24 mg/g dry mass for stinging nettle) and carotenoids (2.11 ± 0.24 mg/g dry mass for lemon balm and 2.62 ± 0.06 mg/g dry mass for stinging nettle). The content of chlorophylls and carotenoids correlated with the DPPH antioxidant (radical scavenging) capacity. Higher antioxidant capacity of the lemon balm extracts compared to nettle samples was attributed to the higher content of polyphenol compounds anthocyanins. Despite the higher cost, the freeze drying (lyophilisation) was recommended as the most suitable drying method, mainly for reasons of preserving maximum pigment content and antioxidant capacity.  相似文献   

20.
In this study, the fed-batch fermentation technique was applied to improve the yield of l-threonine produced by Escherichia coli TRFC. Various fermentation substrates and conditions were investigated to identify the optimal carbon source, its concentration and C/N ratio in the production of l-threonine. Sucrose was found to be the optimal initial carbon source and its optimal concentration was determined to be 70 g/L based on the results of fermentations conducted in a 5-L jar fermentor using a series of fed-batch cultures of E. coli TRFC. The effects of glucose concentration and three different feeding methods on the production of l-threonine were also investigated in this work. Our results showed that the production of l-threonine by E. coli was enhanced when glucose concentration varied between 5 and 20 g/L with DO-control pulse fed-batch method. Furthermore, the C/N ratio was a more predominant factor than nitrogen concentration for l-threonine overproduction and the optimal ratio of ammonium sulfate to sucrose (g/g) was 30. Under the optimal conditions, a final l-threonine concentration of 118 g/L was achieved after 38 h with the productivity of 3.1 g/L/h (46% conversion ratio from glucose to threonine).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号