首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The aim of this study is to use steered molecular dynamics to investigate the dissociation process between IRK and PTP1Bs for wild type and five mutants (consisting of p.D181E, p.D181A, p.Q262A, p.D181A-Y46F, and p.D181A-Q262A). The gained results are observed not only the unbinding mechanism of IRK-PTP1B complexes came from pulling force profile, number of hydrogen bonds, and interaction energy between IRK and PTP1Bs but also described PTP1B’s point mutations could variably change its binding affinity towards IRK. Additionally, the binding free energy calculated by Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) is also revealed that electrostatic energy and polar solvation energy mainly made up the binding free energy of PTP1B-IRK complexes.  相似文献   

2.
In this work, a new ansatz is presented that combines molecular dynamics simulations with MM-PBSA (Molecular Mechanics Poisson-Boltzmann/surface area) to rank the binding affinities of 12 TIBO-like HIV-1 RT inhibitors. Encouraging results have been obtained not only for the relative binding free energies, but also for the absolute ones, which have a root-mean-square deviation of 1.0 kcal/mol (the maximum error is 1.89 kcal/mol). Since the root-mean-square error is rather small, this approach can be reliably applied in ranking the ligands from the databases for this important target. Encouraged by the results, we decided to apply MM-PBSA combined with molecular docking to determine the binding mode of efavirenz SUSTIVA(TM) another promising HIV-1 RT inhibitor for which no ligand-protein crystal structure had been published at the time of this work. To proceed, we define the following ansatz: Five hundred picosecond molecular dynamics simulations were first performed for the five binding modes suggested by DOCK 4.0, and then MM-PBSA was carried out for the collected snapshots. MM-PBSA successfully identified the correct binding mode, which has a binding free energy about 7 kcal/mol more favorable than the second best mode. Moreover, the calculated binding free energy (-13.2 kcal/mol) is in reasonable agreement with experiment (-11.6 kcal/mol). In addition, this procedure was also quite successful in modeling the complex and the structure of the last snapshot was quite close to that of the measured 2,3 A resolution crystal (structure the root-mean-square deviation of the 54 C(alpha) around the binding site and the inhibitor is 1.1 A). We want to point out that this result was achieved without prior knowledge of the structure of the efavirenz/RT complex. Therefore, molecular docking combined with MD simulations followed by MM-PBSA analysis is an attractive approach for modeling protein complexes a priori.  相似文献   

3.
Beta-secretase is a potential target for inhibitory drugs against Alzheimer's disease as it cleaves amyloid precursor protein (APP) to form insoluble amyloid plaques and vascular deposits in the brain. Beta-secretase is matured from its precursor protein, called beta-secretase zymogen, which, different from most of other zymogens, is also partially active in cleaving APP. Hence, it is important to study on the mechanism of the zymogen's activation process. This study was to model the 3-D structure of the zymogen, followed by intensive molecular dynamics (MD) simulations to identify the most probable 3-D model and to study the dynamic structural behavior of the zymogen for understanding the effects of pro-segment on the function of the enzyme. The results revealed that the dropping in catalytic activity of the beta-secretase zymogen could be attributed to the occupation of the entrance of the catalytic site of the zymogen by its pro-segment. On the other hand, the partial catalytic activity of the zymogen could be explained by high fluctuation of the pro-segment in comparison with that of other zymogens, resulting in the occasionally exposure of the catalytic site for access its substrate APP. Indeed, steered MD (SMD) simulation revealed a weak pulling force at quasi-equilibrium state for the pro-segment of the zymogen leaving from the entrance, indicating that this swinging process could take place spontaneously. Furthermore, MM-PBSA calculation revealed a small change of free energy of 10.56 kal/mol between the initial and final states of the process of pro-segment swung outside the binding pocket of beta-secretase zymogen. These results not only account for the partial catalytic activity of beta-secretase zymogen, but also provide useful clues for discovering new potent ligands, as new type of drug leads for curing Alzheimer's disease, to prevent the pro-segment of the zymogen from leaving its catalytic site.  相似文献   

4.
Dynamic information, such as force, structural change, interaction energy, and potential of mean force (PMF), about the desorption of a single cardiotoxin (CTX) protein from a methyl-terminated self-assembled monolayer (SAM) surface was investigated by means of steered molecular dynamics (SMD) simulations. The simulation results indicated that Loop I is the first loop to depart from the SAM surface, which is in good agreement with the results of the nuclear magnetic resonance spectroscopy experiment. The free energy landscape and the thermodynamic force of the CTX desorption process was represented by the PMF and by the derivative of PMF with respect to distance, respectively. By applying Jarzynski's equality, the PMF can be reconstructed from the SMD simulation. The PMFs, calculated by different estimators based upon Jarzynski's equality, were compared with the conventional umbrella sampling method. The best estimation was obtained by using the fluctuation-dissipation estimator with a pulling velocity of v = 0.25 nm/ns for the present study.  相似文献   

5.
The equilibrium and nonequilibrium adaptive alchemical free energy simulation methods optimum Bennett's acceptance ratio and optimum crooks' equation (OCE), based on the statistically optimal bidirectional reweighting estimator named Bennett's Acceptance Ratio or Crooks' equation, perform initial sampling in the staging alchemical transformation and then determine the importance rank of different states via the time-derivative of the variance. The method is proven to give speedups compared with the equal time rule. In the current work, we extend the time derivative of variance guided adaptive sampling method to the configurational space, falling in the term of steered MD (SMD). The SMD approach biasing physically meaningful collective variable (CV) such as one dihedral or one distance to pulling the system from one conformational state to another. By minimizing the variance of the free energy differences along the pathway in an optimized way, a new type of adaptive SMD (ASMD) is introduced. As exhibits in the alchemical case, this adaptive sampling method outperforms the traditional equal-time SMD in nonequilibrium stratification. Also, the method gives much more efficient calculation of potential of mean force than the selection criterion-based ASMD scheme, which is proven to be more efficient than traditional SMD. The OCE workflow is periodicity-of-CV dependent while ASMD is not. The performance is demonstrated in a dihedral flipping case and two distance pulling cases, accounting for periodic and nonperiodic CVs, respectively. © 2019 Wiley Periodicals, Inc.  相似文献   

6.
姚雪霞 《化学研究》2008,19(4):56-59
运用分子动力学(Molecular dynamics,MD)和MM—PBSA(molecular mechanics/Poisson Boltzmann surfaeearea)相结合的方法预测了γ-环糊精(γ-cyclodextrin,γ-CD)和波尼松龙的包结模式.在MD模拟过程中,波尼松龙分别采用A环和D环两种取向从γ-CD大口端进入其空腔.在MD轨迹采样基础上,采用高效MM—PBSA方法计算了两种取向的包结自由能.结果表明,计算包结自由能值和实验包结自由能值非常吻合.进一步分析各个能量项,发现范德华相互作用能为包结的主要驱动力.通过比较两种取向的包结自由能大小,预测D环取向为优势包结模式.  相似文献   

7.
In this article, an implementation of steered molecular dynamics (SMD) in coarse‐grain UNited RESidue (UNRES) simulations package is presented. Two variants of SMD have been implemented: with a constant force and a constant velocity. The huge advantage of SMD implementation in the UNRES force field is that it allows to pull with the speed significantly lower than the accessible pulling speed in simulations with all‐atom representation of a system, with respect to a reasonable computational time. Therefore, obtaining pulling speed closer to those which appear in the atomic force spectroscopy is possible. The newly implemented method has been tested for behavior in a microcanonical run to verify the influence of introduction of artificial constrains on keeping total energy of the system. Moreover, as time dependent artificial force was introduced, the thermostat behavior was tested. The new method was also tested via unfolding of the Fn3 domain of human contactin 1 protein and the I27 titin domain. Obtained results were compared with Gø‐like force field, all‐atom force field, and experimental results. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
采用拉伸分子动力学方法研究聚乙烯单链从一个强吸附表面被拉伸的动力学过程.当聚乙烯单链被拉伸时,从理想弹簧测量到的平均力与形变的曲线上出现了一个力的平台,这与实验结果非常一致.在研究这个平台力与拉伸速度的关系时发现,当速度v<0.001 nm/ps时,不随速度的变化而变化;当速度v>0.001 nm/ps时,随着拉伸速度的增加而迅速上升,这表明拉伸速度0.001 nm/ps是平衡态拉伸和非平衡态拉伸的临界点,并与链长无关.按顺序拉伸和释放这条链,观察到有趣的力回滞现象,并与实验结果进行了比较.  相似文献   

9.
The entering and leaving processes of Huperzine A (HupA) binding with the long active-site gorge of Torpedo californica acetylcholinesterase (TcAChE) have been investigated by using steered molecular dynamics simulations. The analysis of the force required along the pathway shows that it is easier for HupA to bind to the active site of AChE than to disassociate from it, which for the first time interprets at the atomic level the previous experimental result that unbinding process of HupA is much slower than its binding process to AChE. The direct hydrogen bonds, water bridges, and hydrophobic interactions were analyzed during two steered molecular dynamics (SMD) simulations. Break of the direct hydrogen bond needs a great pulling force. The steric hindrance of bottleneck might be the most important factor to produce the maximal rupture force for HupA to leave the binding site but it has a little effect on the binding process of HupA with AChE. Residue Asp72 forms a lot of water bridges with HupA leaving and entering the AChE binding gorge, acting as a clamp to take out HupA from or put HupA into the active site. The flip of the peptide bond between Gly117 and Gly118 has been detected during both the conventional MD and SMD simulations. The simulation results indicate that this flip phenomenon could be an intrinsic property of AChE and the Gly117-Gly118 peptide bond in both HupA bound and unbound AChE structures tends to adopt the native enzyme structure. At last, in a vacuum the rupture force is increased up to 1500 pN while in water solution the greatest rupture force is about 800 pN, which means water molecules in the binding gorge act as lubricant to facilitate HupA entering or leaving the binding gorge.  相似文献   

10.
The fast pulling ligand (FPL) out of binding cavity using non‐equilibrium molecular dynamics (MD) simulations was demonstrated to be a rapid, accurate and low CPU demand method for the determination of the relative binding affinities of a large number of HIV‐1 protease (PR) inhibitors. In this approach, the ligand is pulled out of the binding cavity of the protein using external harmonic forces, and the work of pulling force corresponds to the relative binding affinity of HIV‐1 PR inhibitor. The correlation coefficient between the pulling work and the experimental binding free energy of shows that FPL results are in good agreement with experiment. It is thus easier to rank the binding affinities of HIV‐1 PR inhibitors, that have similar binding affinities because the mean error bar of pulling work amounts to . The nature of binding is discovered using the FPL approach. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
Alanine scanning mutagenesis of protein-protein interfacial residues can be applied to a wide variety of protein complexes to understand the structural and energetic characteristics of the hot-spots. Binding free energies have been estimated with reasonable accuracy with empirical methods, such as Molecular Mechanics/Poisson-Boltzmann surface area (MM-PBSA), and with more rigorous computational approaches like Free Energy Perturbation (FEP) and Thermodynamic Integration (TI). The main objective of this work is the development of an improved methodological approach, with less computational cost, that predicts accurately differences in binding free energies between the wild-type and alanine mutated complexes (DeltaDeltaG(binding)). The method was applied to three complexes, and a mean unsigned error of 0.80 kcal/mol was obtained in a set of 46 mutations. The computational method presented here achieved an overall success rate of 80% and an 82% success rate in residues for which alanine mutation causes an increase in the binding free energy > 2.0 kcal/mol (warm- and hot-spots). This fully atomistic computational methodological approach consists in a computational Molecular Dynamics simulation protocol performed in a continuum medium using the Generalized Born model. A set of three different internal dielectric constants, to mimic the different degree of relaxation of the interface when different types of amino acids are mutated for alanine, have to be used for the proteins, depending on the type of amino acid that is mutated. This method permits a systematic scanning mutagenesis of protein-protein interfaces and it is capable of anticipating the experimental results of mutagenesis, thus guiding new experimental investigations.  相似文献   

12.
Influenza virus of different subtypes H1N1, H2N2, H3N2 and H5N1 cause many human pandemic deaths and threatening the people worldwide. The Hemagglutinin (HA) protein mediates viral attachment to host receptors act as an attractive target. The sixteen natural compounds have been chosen to target the HA protein. Molecular docking studies have been performed to find binding affinity of the compounds. Out of the sixteen, three compounds CI, CII and CIII found to posses a higher binding affinity. The molecular dynamics (MD) simulation has been performed to study the structural, dynamical properties for the nine different complexes CI, CII, CIII bound with H1, H2, H3 proteins and the results were compared. The molecular mechanics Poission-Boltzmann surface area (MM-PBSA) method is used to compare the binding free energy, its different energy components and per residue binding contribution. The H1 subtype shows higher binding preference for all the curcumin derivatives than H2 and H3. The binding capability of protein subtypes with curcumin derivatives and the binding affinity of curcumin compounds are in the order H1 > H2 > H3 and CI > CII > CIII respectively. The two -O-CH3- groups present in the CI compound help to have strong binding with HA protein than CII and CIII. The van der Waals interaction energy plays a significant role for binding in all the complexes. The hydrogen bonding interactions were monitored throughout the MD simulation. The conserved region (153–155) and the helix region (193–194) of H1, H2, H3 protein subtypes are found to possess higher binding susceptibility for binding of the curcumin derivatives.  相似文献   

13.
In polyacrylamide gels, we have quantitatively determined Forster transfer (fluorescense resonance energy transfer, FRET) between two fluorescent dyes attached to DNA in protein-DNA complexes. The donor-dye fluorescein labeled to DNA retains its free mobility in the polyacrylamide gel, however, its fluorescence properties change. The different quantum yield of fluorescein in the gel is found to be independent of the gel concentration and can thus be quantitatively taken into account by a reduced Forster distance R0 of 46 A compared to 50 A in solution. We have determined global structural properties of two proteins binding to double-labeled DNA using a novel gel-based fluorescence resonance energy transfer assay. In polyacrylamide gels we have analyzed the binding of integration host factor (IHF) and the high mobility group protein NHP6a to their substrate DNA. The measured Forster transfer efficiency allows us to deduce information on the overall shape and the DNA bending angle in the complex.  相似文献   

14.
15.
三角架型配体由于其独特的配位方式而具有许多优良的物理和化学性质 ,如能稳定高氧化态的过渡金属离子[1 3] ,用作优良的电极活性物质[4] ,具有生物活性[5] 等 .因此近十余年来对该类配合物的研究一直是配位化学研究领域的一个重要部分 .但到目前为止 ,对具有三角架结构的三酰胺型开链冠醚的研究却很少 ,且主要集中于研究它与过渡金属和碱金属离子的相互作用及其性质[4,5] ,有关该类配体与稀土离子的配位形式及性质的研究则更少[6] .为了进一步研究该类配体与稀土离子的配位能力及所形成配合物的性质 ,我们参照文献 [5]方法 ,合成出配体 1 ,…  相似文献   

16.
姚雪霞 《化学学报》2009,67(12):1318-1324
运用分子动力学(molecular dynamics, MD)和MM-PBSA (molecular mechanics/Poisson Boltzmann surface area)相结合的方法预测了β-环糊精(cyclodextrin, CD)和甾类客体分子包结模式. 通过重原子均方根偏差(root mean square deviation, RMSD)分析可得, 两种包结模式下客体分子都可以和β-CD形成稳定的包结. 在MD轨迹采样基础上, 采用高效MM-PBSA方法计算了两种包结模式下的包结自由能. 计算结果显示, β-CD和三个甾类客体分子包结的主要驱动力为范德华相互作用, 而溶剂化能和熵变则不利于体系的包结. 进一步分析平均构象和包结自由能发现, 对于波尼松龙, D-up (D-ring up orientation)取向为优势包结模式; 而乙炔雌二醇和雌三醇的优势包结模式均为A-up (A-ring up orientation)取向. 通过比较β-CD和三个客体分子的理论包结自由能, 预测包结稳定性的次序为乙炔雌二醇>雌三醇>波尼松龙, 和实验结果相一致.  相似文献   

17.

Noncovalent interactions are accepted to be prevalent across biochemical systems, including governing interactions between nucleic acids and proteins. The present review summarizes work done to characterize the abundance, structure and strength of DNA–protein π interactions by combining rigorous searches of experimental X-ray crystal structures of DNA–protein complexes and quantum chemical calculations. Focus is placed on interactions that occur between the π-containing amino acids (W, H, F, Y, R, E, and D) and the canonical DNA nucleobases (A, T, G, and C) or 2′-deoxyribose moiety. These studies highlight the considerable frequency of both DNA–protein π–π and sugar–π interactions in nature, which can involve any π-containing amino acid arranged in many unique binding orientations with respect to any DNA component. When combined with the significant strength predicted for the identified DNA–protein π contacts using density functional theory, these works underscore the potential impact of these interactions on critical biological functions. This conclusion is supported by a review of examples from the recent literature that have acknowledged the role of DNA–protein π interactions in binding, specificity, and catalysis.

  相似文献   

18.
The importance of computational methods for the simulation and analysis of biological systems has increased during the last years. In particular, methods to predict binding energies are developing not only with the aim of ranking the affinities between two or more complexes, but also to quantify the contribution of different types of interaction. In this work, we present the application of HINT, a non Newtonian force field, to rank the affinities of complexes formed by estrogen receptors (ER) alpha and beta and different estrogen responsive elements (ERE) near the estrogen-regulated genes. We used the crystallographic coordinates of the DNA binding domain of ERalpha complexed to a consensus ERE as a starting point to simulate several complexes in which some nucleotides in the ERE sequence were mutated. Moreover, we used homology modeling methods to create the structure of the complexes between the DNA binding domain of ERbeta (for which no experimental structures are currently available) and the same ERE sequences. Our results show that HINT is able to rank the affinities of ERalpha and ERbeta for different ERE sequences, and to correctly identify the positions on the DNA sequence that are most important for binding affinity. Moreover, the HINT output gives us the opportunity to identify and quantify the role played by each single atom of amino acids and nucleotides in the binding event, as well as to predict the effect on the binding affinity for other nucleotide mutations.  相似文献   

19.
The two six-coordinate Pt(IV) complexes, containing bidentate nitrogen donor/methyl ligands with general formula [Pt(X)2Me2(tbu2bpy)], where tbu2bpy = 4,4′-ditert-butyl-2,2′-bipyridine and X = Cl (C1) or Br (C2), serving as the leaving groups were synthesized for evaluation of their anticancer activities and DNA binding properties. To examine anticancer activities of the synthetic complexes, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and ethidium bromide/acridine orange (EB/AO) staining method were performed. The binding properties of these complexes to DNA and purine nucleotides were examined, using different spectroscopic techniques. These complexes demonstrated significant anticancer activities against three cancer cell lines Jurkat, K562, and MCF-7. On the basis of the results of EB/AO staining, C1 and C2 were also capable to induce apoptosis in cancer cells. These complexes comprise halide leaving groups, displaying different departure rates; accordingly, they demonstrated slightly dissimilar anticancer activity and significantly different DNA/purine nucleotide binding properties. The results of DNA interaction studies of these complexes suggest a mixed-binding mode, comprising partial intercalation and groove binding. Overall, the results presented herein indicate that the newly synthesized Pt(IV) complexes are promising class of the potential anticancer agents which can be considered as molecular templates in designing novel platinum anticancer drugs. This study also highlights the importance of leaving group in anticancer activity and DNA binding properties of Pt(IV) complexes.  相似文献   

20.
Novel trinuclear complexes C23H31N6O6CuSn2Cl5 [1], C23H31N6O6CuZr2Cl5 [2], C23H31N6O6ZnSn2Cl5 [3], and C23H31N6O6ZnZr2Cl5 [4] were synthesized and characterized by spectroscopic (IR, 1H, 13C, 2D COSY, and 119Sn NMR, EPR, UV-vis, ESI-MS) and analytical methods. In complexes 1-4, the geometry of copper and zinc metal ions were described as square-based pyramidal with l-tryptophan coordinated to copper/zinc via carboxylate group while Sn/Zr was present in the hexacoordinate environment. The interaction of 1 and 2 with calf thymus DNA in Tris buffer was studied by electronic absorption titration, luminescence titration, cyclic voltammetry, circular dichroism, and viscometric measurements. The emission quenching of these complexes by [Fe(CN)6]4- depressed greatly when bound to DNA. Observed changes in the circular dichoric spectra of DNA in presence of 1 and 2 support the strong binding of complexes with DNA. The relative specific viscosity of DNA bound to 1 and 2 decreased, indicating that the complexes bind to DNA via covalent binding. The results reveal that the extent of DNA binding of 1 was greater than that of 2. To evaluate the mechanistic pathway of DNA inhibition, counting experiments and MTT assay were employed to assess the induction of apoptosis by 1. Western blot analysis of whole cell lysates and mitochondrial fractions with Bcl-2 and p-53 family proteins and caspase-3 colorimetry assay were also carried out on a human neuroblastoma cell line SY5Y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号