首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mei SR  Yao QH  Cai LS  Xing J  Xu GW  Wu CY 《Electrophoresis》2003,24(9):1411-1415
Urinary 8-hydroxy-2'-deoxyguanosine (8OHdG) is an excellent marker of oxidative DNA damage. Until now, urinary 8OHdG has been measured by high-performance liquid chromatography with electrochemical detection. A simple and sensitive method for the analysis of urinary 8OHdG by capillary electrophoresis with end-column amperometric detection has been developed in our laboratory. A single-step solid-phase extraction procedure was optimized and used for extracting 8OHdG from human urine. To improve the sensitivity of this method, a new focusing technique based on a dynamic pH junction was used. The limit of detection was 20 nM (signal-to-noise ratio S/N = 3), the linear range was 50 nM-10 microM, and the correlation coefficient was better than 0.999. The relative standard deviation (RSD) was found to be 0.57% for migration time, and 4.79% for peak current. To show the usefulness of the method, the urinary concentration of 8OHdG in nine healthy persons and ten cancer patients was determined. The urinary concentration of 8OHdG in cancer patients was significantly higher than that in healthy persons.  相似文献   

2.
Yao QH  Mei SR  Weng QF  Zhang PD  Yang Q  Wu CY  Xu GW 《Talanta》2004,63(3):617-623
8-hydroxy-2′-deoxyguanosine (8OHdG) has been widely used as a biomarker of oxidative DNA damage in both animal models and human studies. To evaluate the effect of cigarette smoking on oxidative stress, we studied the levels of urinary 8OHdG from smokers and non-smokers and investigated the association with cigarette smoking. The urinary 8OHdG concentrations were determinated by capillary electrophoresis with end-column amprometric detection (CE-AD) after a single-step solid phase extraction (SPE), and then quantitatively expressed as a function of creatinine excretion. To increase the concentration sensitivity, a dynamic pH junction was used and the focusing effect was obvious when using 30 mM phosphate (pH 6.50) as sample matrix. The limit of detection is 4.3 nM (signal-to-noise ratio S/N=3). The relative standard deviation (R.S.D.) was 1.1% for peak current, and 2.3% for migration time. Based on the selected CE-AD method, it was found that the mean value of urinary 8OHdG levels in the smokers significantly higher than that in non-smokers ( versus , P=0.0004; creatinine versus creatinine, P=0.028).  相似文献   

3.
A novel separation method of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) was developed. The C(18) and the strong cation-exchange (SCX) columns were employed to separate urinary 8-OHdG. The major interfering substances were removed by the consecutive processes of the C(18) and the SCX columns. This newly developed procedure allows researchers to quantitatively measure urinary 8-OHdG by high performance liquid chromatography-electrochemical detector (HPLC-ECD) successfully. The newly developed separation method produces the optimized procedure of 8-OHdG measurement, and followed by the evaluation of its basic performance. The optimized measurement was highly reproducible (CV=2.0-2.9%, n=10). A correlation was observed between the proposed HPLC-ECD method and the column switching method (r=0.96).  相似文献   

4.
A capillary electrophoresis method with UV detection was developed for the determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in untreated urine samples. The calibration graph for 8-OHdG in urine is linear in the concentration range 10-500 mg/l. and the detection limit is 5 mg/l (17 microM). 8-OHdG was determined in urine from oncological patients treated by radiation therapy. Its concentrations relative to creatinine were found to be in the range 10-47 microg 8-OHdG/l mg creatinine (4-19 micromol 8-OHdG/mmol creatinine). The overall time of the analysis of a urine sample was less than 15 min.  相似文献   

5.
Using synthesized 8-hydroxy-2'-deoxyguanosine 3'-monophosphate as a marker, the 32P-postlabeling method was adapted with minimum modifications for the analysis of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) content in deoxyribonucleic acid (DNA). This method allows the analysis of one 8-OH-dG per 10(4) DNA nucleotides with only 10 pmoles of nucleotides required. The amounts of 8-OH-dG in DNA detected by the postlabeling method correlated well with the electrochemical detection method but were consistently lower.  相似文献   

6.
7.
The selective detection of 8-oxo-2'-deoxyguanosine (8-oxo-dG) in DNA without chemical or enzymatic treatment is an attractive tool for genomic research. We designed and synthesized the non-natural nucleoside analogue, the adenosine-1,3-diazaphenoxazine (Adap) derivative, for selective recognition of 8-oxo-dG in DNA. This study clearly showed that Adap has a highly selective stabilizing effect on the duplex containing the Adap-8-oxo-dG base pair. Furthermore, the fluorescent property of Adap was shown to be useful for the selective detection of 8-oxo-dG in the duplex DNA. To the best of our knowledge, this is the first successful demonstration of a non-natural nucleoside with a high selectivity for 8-oxo-dG in DNA.  相似文献   

8.
Guanosine derivatives are important for diagnosis of oxidative DNA damage including 8-hydroxy-2'-deoxyguanosine (8-OHdG) as one of the most abundant products of DNA oxidation. This compound is commonly determined in urine, which makes 8-OHdG a good non-invasive marker of oxidation stress. In this study, we optimized and tested the isolation of 8-OHdG from biological matrix by using paramagnetic particles with an antibody-modified surface. 8-OHdG was determined using 1-naphthol generated by alkaline phosphatase conjugated with the secondary antibody. 1-Naphthol was determined by stopped flow injection analysis (SFIA) with electrochemical detector using a glassy carbon working electrode and by stationary electrochemical detection using linear sweep voltammetry. A special modular electrochemical SFIA system which needs only 10 μL of sample including working buffer for one analysis was completely designed and successfully verified. The recoveries in different matrices and analyte concentration were estimated. Detection limit (3 S/N) was estimated as 5 pg/mL of 8-OHdG. This method promises to be very easily modified to microfluidic systems as "lab on valve". The optimized method had sufficient selectivity and thus could be used for determination of 8-OHDG in human urine and therefore for estimation of oxidative DNA damage as a result of oxidation stress in prostate cancer patients.  相似文献   

9.
A highly sensitive and selective method, using isotope-dilution liquid chromatography with tandem mass spectrometry (LC/MS/MS), for quantification of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), an important biomarker of oxidative stress, was developed and compared with a method using an enzyme-linked immunosorbent assay (ELISA). The synthesis of (15)N(5)-8-OHdG is described. In this study, 140 urine samples were collected from workers in a coke oven plant, including samples from 49 control workers and 91 workers who had been occupationally exposed to polyaromatic hydrocarbons (PAHs). The major urinary metabolite of PAHs, 1-hydroxypyrene (1-OHP), was measured for the exposed workers. Results from the present study showed a significant correlation between these two measurements for determination of 8-OHdG (p < 0.05, r(2) = 0.70). However, only the LC/MS/MS measurements of urinary levels of 8-OHdG showed a significant difference between the exposed and the control subjects (p < 0.05). The ELISA method failed to demonstrate this difference. Furthermore, only by using the LC/MS/MS method was a significant correlation observed between the urinary levels of 1-OHP and 8-OHdG. These findings suggest that a highly specific and sensitive analytical method such as isotope-dilution LC/MS/MS is extremely important and necessary for accurate measurement and a comprehensive study of oxidative stress in human subjects.  相似文献   

10.
The ability to detect DNA damage within the context of the surrounding sequence is an important goal in medical diagnosis and therapies, but there are no satisfactory methods available to detect a damaged base while providing sequence information. One of the most common base lesions is 8-oxo-7,8-dihydroguanine, which occurs during oxidation of guanine. In the work presented here, we demonstrate the detection of a single oxidative damage site using ion channel nanopore methods employing α-hemolysin. Hydantoin lesions produced from further oxidation of 8-oxo-7,8-dihydroguanine, as well as spirocyclic adducts produced from covalently attaching a primary amine to the spiroiminodihydantoin lesion, were detected by tethering the damaged DNA to streptavidin via a biotin linkage and capturing the DNA inside an α-hemolysin ion channel. Spirocyclic adducts, in both homo- and heteropolymer background single-stranded DNA sequences, produced current blockage levels differing by almost 10% from those of native base current blockage levels. These preliminary studies show the applicability of ion channel recordings not only for DNA sequencing, which has recently received much attention, but also for detecting DNA damage, which will be an important component to any sequencing efforts.  相似文献   

11.
A new, simple and sensitive pre-column fluorescence derivatization high-performance liquid chromatographic method for the determination of the oxidative DNA stress marker, 8-oxo-7,8-dihydro-2'-deoxyguanosine, was developed. Solid-phase extraction using an Oasis HLB cartridge avoided troublesome sample preparation steps, interference from charged species and frequent and essential electrode maintenance in electrochemical procedures. 8-Oxo-7,8-dihydro-2'-deoxyguanosine and other guanine compounds were selectively derivatized with glyoxal reagents (phenylglyoxal, 3,4-methylenedioxyglyoxal, 2-naphtylglyoxal and 6-methoxynaphthylglyoxal) at 40-60 degrees C. Derivatization with 6-methoxynaphthylglyoxal at 40 degrees C for 30 min gave the strongest fluorescence product. The fluorescence derivatives from reaction with 6-methoxynaphthylglyoxal were separated on a Capcell Pak C18 SG 120A column (4.6 mm i.d. x 150 mm, 5 microm) with acetonitrile-5 mM phosphate buffer (pH 6.0; 3:7, v/v) as mobile phase. The detection wavelength of the fluorescence derivative of 8-oxo-7,8-dihydro-2'-deoxyguanosine was lambda(ex) 400 nm and lambda(em) 510 nm. The detection limit of 8-oxo-7,8-dihydro-2'-deoxyguanosine was 1 ng/mL using 50 mL of urine. The calibration graphs were linear up to 30 microg/mL for 8-oxo-7,8-dihydro-2'-deoxyguanosine. The relative standard deviation of 20 ng/mL of 8-oxo-7,8-dihydro-2'-deoxyguanosine was 7.0%. The proposed method was compared with the enzymatic ELISA 8-oxo-7,8-dihydro-2'-deoxyguanosine analysis method (8-OH-dG Check, JaICA, Shizuoka, Japan). The correlation coefficient was 0.79 (n = 20) and y = 0.85x + 5.34. The proposed method was applied to the monitoring of 8-oxo-7,8-dihydro-2'-deoxyguanosine in urine from male heavy smokers.  相似文献   

12.
建立了基于自制混合型小柱的样品净化-高效液相色谱-串联质谱同时测定7种有机磷酸酯(OPEs)主要代谢产物及生物标志物8-羟基-2'-脱氧鸟苷(8-OHdG)的分析方法。样品经乙腈提取后用自制小柱富集净化,以乙腈-0.2%(v/v)氨水溶液作为流动相进行梯度洗脱,在多反应监测模式下进行定性和定量分析。结果显示,8种目标物在0.1~200 μg/L范围内呈良好的线性关系,7种OPEs代谢物的回收率为52.36%~114.56%,8-OHdG回收率为88.63%~97.72%。将该方法应用于人体尿液实际样品中,7种OPEs代谢物和8-OHdG的检出范围分别为6.24~46.07 μg/L和5.90~16.71 μg/L,8-OHdG与7种OPEs代谢物总含量之间存在显著相关性。该方法操作简单、灵敏度高、准确性好、重现性强,可为更全面地评价人体内OPEs暴露水平及机体损伤提供可靠的技术支持。  相似文献   

13.
Narrowband UVB (NB-UVB) is a newly developed UVB source that, in addition to the previously used broadband UVB (BB-UVB), has been effectively used in phototherapy of various skin diseases. Besides its therapeutic effectiveness, NB-UVB also has some adverse effects that should be evaluated. As with all phototherapies, the photocarcinogenic potential of NB-UVB is the major concern. To assess the carcinogenic potential we measured the DNA damage induced by the two UVB sources because exposure of cells to UVB directly or indirectly induces DNA damage such as cyclobutane pyrimidine dimers (CPD) or 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), respectively. These types of DNA damage cause mutations of oncogenes and tumor suppressor genes, which can lead to photocarcinogenesis. In the present study we measured the yield of CPD and the oxidative DNA damage marker, 8-oxodGuo, in organ-cultured human skin and in mouse skin after exposure to NB-UVB or BB-UVB at therapeutically equivalent doses. We show that a 10-fold higher dose of NB-UVB yields a similar amount of CPD compared with BB-UVB in two types of samples examined. In contrast to CPD, the formation of 8-oxodGuo after irradiation with NB-UVB at a 10-fold higher dose is 1.5-3 times higher than that caused by BB-UVB. These results suggest that although NB-UVB at equivalent erythema-edema doses is not more potent in inducing CPD formation than is BB-UVB, NB-UVB may generate a higher yield of oxidized DNA damage.  相似文献   

14.
In this work, the effects of visible (655 nm) and near-infrared (830 nm) light on ATP in solution were examined. The addition of irradiated ATP to the hexokinase reaction caused significant differences in the reaction rates and in the Michaelis-Menten kinetic parameters, k(m) and v(max). Irradiated ATP cleavage by hexokinase occurred in less time. Changes were wavelength and dose dependent. Excitation of ATP with a 260 nm wavelength ultraviolet light induced a fluorescence emission that was decreased when Mg2+ was added due to ion binding of the phosphates, which are the structures that modify the fluorescence produced by the adenine dipoles. The irradiation of this ATP.Mg2+ solution using 655 and 830 nm light increased the fluorescence by a possible displacement of Mg2+ from the phosphates. In conclusion, visible and near-infrared light modifies the biochemical behavior of ATP in the hexokinase reaction and the fluorescence intensity of the molecule thus altering the Mg2+ binding strength to the oxygen atoms in the phosphate group.  相似文献   

15.
Abstract— The aim of this investigation is the evaluation of DNA interaction of with tetraruthenated porphyrin (TRP) and of DNA damage in the presence of light. Direct-fluorescence and electronic absorption measurements after incubation of DNA with TRP indicate strong binding between pBR322 DNA or calf thymus DNA with the modified porphyrin. Exposure of pBR322 DNA to TRP (up to 3 μ M ) and light leads to single-strand break formation as determined by the conversion of the supercoiled form (form I) of the plasmid into the nicked circular form (form II). Oxidative DNA base damage was evaluated by the detection of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) after irradiation of calf thymus DNA in the presence of the TRP. The data demonstrated a dose and time dependence with each type of DNA damage. These data indicate (1) a specificity of the binding mode and (2) type I and II photoinduced mechanisms leading to strand scission activity and 8-oxodGuo formation. Accordingly, singlet molecular oxygen formation, after TRP excitation, was confirmed by near-infrared emission. From these investigations a potential application of TRP in photodynamic therapy is proposed.  相似文献   

16.
The analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) represents an important biomarker of oxidative stress. A sensitive method for the detection of 8-oxodG in DNA samples has been developed that utilizes immunoaffinity column purification of 8-oxodG followed by liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) multiple reaction monitoring (MRM) mode analysis. An internal standard of stable-isotopically labelled 8-oxodG containing [(15)N(5)] was added prior to the enzymatic digestion of DNA to deoxynucleosides, which was then subjected to immunoaffinity column purification followed by microbore positive ion LC/MS/MS MRM. The 8-oxo-7,8-dihydroguanine (8-oxoG) base product ion at m/z 168 was monitored following cleavage of the glycosidic bond of the 8-oxodG [M+H](+) ion at m/z 284. Similar determinations were made for [(15)N(5)]8-oxodG by monitoring the [(15)N(5)]8-oxoG base product ion at m/z 173 formed from the [M+H](+) ion at m/z 289. The introduction of the immunoaffinity column purification step into the method represents a significant improvement for the accurate determination of 8-oxodG since all artefactual peaks that are observed following the direct injection of digested DNA onto the LC/MS/MS system are removed. The identity of these artefactual peaks has been confirmed to be 2'-deoxyguanosine (dG), thymidine (dT) and 2'-deoxyadenosine (dA). The presence of these artefactual peaks in MRM mode analysis can be explained as a consequence of a concentration effect due to their considerably higher relative abundance in DNA compared to 8-oxodG. The highest signal intensity was observed for the artefactual peak for dA due to the fact that the adenine base formed an adduct with methanol, which is a constituent of the mobile phase. The resulting [M+H](+) ion at m/z 284 (dA m/z 252 + CH(3)OH m/z 32) gave rise to a product ion at m/z 168 following the loss of deoxyribose in MRM mode analysis. Control calf thymus DNA was digested to deoxynucleosides and unmodfied deoxynucleosides were removed by immunoaffinity column purification; the enriched 8-oxodG was determined by LC/MS/MS MRM. The level of 8-oxodG in control calf thymus DNA was determined to be 28.8 +/- 1.2 8-oxodG per 10(6) unmodified nucleotides (n = 5) using 5 microg of digested DNA. The limit of detection of the microbore LC/MS/MS MRM for 8-oxodG was determined to be 25 fmol on-column with a signal-to-noise ratio of 3.5.  相似文献   

17.
A selective method based on high performance liquid chromatography with electrochemical detection (HPLC-ECD) was developed to enable simultaneous detection of 8-oxo-7,8-dihydroguanine (8-oxoGua) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo), products of DNA oxidative damage, in the presence of uric acid (UA), a strong interferent in their electrochemical detection. The method developed consists of HPLC isocratic elution with amperometric detection on a glassy carbon electrode, enabling a detection limit for 8-oxoGua and 8-oxodGuo lower than 1 nM in standard mixtures. Detection of low concentrations up to 25 nM of 8-oxoGua and 8-oxodGuo in the presence of UA in a 104-fold higher concentration was achieved after one-step solid phase extraction (SPE). The method was tested with urine samples and it was possible to detect and quantify the presence of 8-oxoGua, and to confirm that UA was eliminated after uricase degradation and SPE. The LOD found in urine samples was about 80 nM, a value higher than in standard mixtures, due to the increase of background current in the urine matrix. The results presented here contribute to the development of a methodological approach to simultaneous determination of 8-oxoGua and 8-oxodGuo in urine samples.  相似文献   

18.
Benzil ketyl radicals are generated by laser flash irradiation of benzil in 2-propanol at T = -50 °C and are observed by time-resolved ESR spectroscopy. Their electron spin polarization is found to consist of a fast and slowly rising emissive component. The fast component is due to polarized ketyl radicals formed by a two-photon process from an excited triplet state. The slow one is attributed to ketyl radicals which are generated by a slow photoreduction of benzil in its lowest triplet state. Their emissive polarization stems predominantly from the radical-triplet pair mechanism (RTPM). Rate constants of the relevant processes are determined.  相似文献   

19.
This Letter describes an alternative protocol for the Michael addition of thiols to 4-hydroxy-2-alkynoates. The reaction proceeds at room temperature in water under ultrasound irradiation. With amines instead of thiols a sequential conjugate addition/lactonization reaction leads to important 4-amino-furan-2-one derivatives.  相似文献   

20.
An HPLC (high performance liquid chromatography) method with laser induced fluorescence (LIF) detection is described for the determination of 4-hydroxy-2-nonenal (HNE) formed from lipid peroxidation in rat hepatocytes. Carbonyl compounds were fluorescently labelled by incubating the hepatocyte samples with a tagging reagent, 4-(2-carbazoylpyrrolidin-1-yl)-7-nitro-2,1,3-benzoxadiazole (NBD-ProCZ), at 60 degrees C for 10 min. The hydrazone derivatives were extracted with a C18 solid phase extraction (SPE) cartridge and separated on a reversed-phase HPLC column. The detection limit was 2.5 fmol or 0.5 nM (5 microL injection) of HNE in the cell homogenate. Method precision (C.V.) was 5% at the 5 nM level. The method has been used to determine free HNE in rat hepatocyte samples treated with several pro-oxidant toxins. A significant HNE increase (from 4 to 27.6 pmol/10(6) cells) was observed with the samples treated by allyl alcohol. The results were in accordance with those for malondialdehyde formation as measured by a thiobarbituric acid (TBA) assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号