首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Packed-column supercritical fluid chromatography (pSFC) is a fast separation technique that combines the properties of HPLC and GC. pSFC with carbon dioxide as the mobile phase and packed silica column as the stationary phase possesses the properties of normal phase mechanism; however, the addition of modifiers to the mobile phase allows the separation of relatively polar compounds. In spite of its many positive attributes, pSFC has not been widely used in areas such as proteomics, where methods such as HPLC dominate. Packed column SFC has been extensively used in clinical and pharmaceutical laboratories, especially for separation of nonpolar and chiral drugs. This review will discuss recently published applications of pSFC, with a specific focus on its advantages and limitations for the analysis of pharmaceuticals with varying chemical properties.  相似文献   

2.
To understand the chromatographic process as a whole, whether it be for gas chromatography (GC), liquid chromatography (LC), or supercritical fluid chromatography (SFC), one needs to know the chemical and physical nature of the mobile and stationary phases and also the interactions that take place between analytes (solutes) and the two phases. An approach towards Investigating the ways that stationary and mobile phases contribute to chromatographic retention Involves exploring the effects of solvent polarity on the strength of the mobile phase. In SFC this could involve determining the polarity of several different modifier/carbon dioxide mobile phases. In this paper, the use of a solvatochromic indicator to learn more about the effects of SFC modifier/mobile phase polarity will be investigated and discussed using several different modifiers and a diolmodified silica column.  相似文献   

3.
Over the past five years, an increasing number of studies have been published on supercritical fluid chromatography (SFC) and combined supercritical fluid chromatography—mass spectrometry (SFC—MS), demonstrating their advantages for the separation and analysis of non-volatile or thermally labile compounds. Further technological developments are expected to make SFC (and specially SFC—MS) a puissant, routine analytical tool that is complementary to gas chromatography (GC) (and GC—MS) and liquid chromatography (LC) (and LC—MS). Because of supercritical fluid properties, SFC—MS may be more easily implemented than LC—MS and better performance may be obtained for some types of substances or when complex mixtures must be analysed.  相似文献   

4.
The use of supercritical fluids as chromatographic mobile phases allows to obtain rapid separations with high efficiency on packed columns, which could favour the replacement of numerous HPLC methods by supercritical fluid chromatography (SFC) ones. Moreover, despite some unexpected chromatographic behaviours, general retention rules are now well understood, and mainly depend on the nature of the stationary phase. The use of polar stationary phases improves the retention of polar compounds, when C18-bonded silica favours the retention of hydrocarbonaceous compounds. In this sense, reversed-phase and normal-phase chromatography can be achieved in SFC, as in HPLC. However, these two domains are clearly separated in HPLC due to the opposite polarity of the mobile phases used for each method. In SFC, the same mobile phase can be used with both polar and non-polar stationary phases. Consequently, the need for a novel classification of stationary phases in SFC appears, allowing a unification of the classical reversed- and normal-phase domains. In this objective, the paper presents the development of a five-dimensional classification based on retention data for 94-111 solutes, using 28 commercially available columns representative of three major types of stationary phases. This classification diagram is based on a linear solvation energy relationship, on the use of solvation vectors and the calculation of similarity factors between the different chromatographic systems. This classification will be of great help in the choice of the well-suited stationary phase, either in regards of a particular separation or to improve the coupling of columns with complementary properties.  相似文献   

5.
王少芬  魏建谟 《分析化学》2001,29(6):725-730
超临界流体色谱(SFC)在色谱分离过程中能在较低的温度下分析对热不稳定性的化合物,包括金属络合物和金属有机化合物。本文总结了近来文献报道的各种过渡金属、重金属、镧系和锕系以及铅、汞和锡的金属有机化合物的SFC分离,还讨论了SFC检测系统和金属有机化合物的溶解度的测定。  相似文献   

6.
Retention and separation of achiral compounds in supercritical fluid chromatography (SFC) depend on numerous parameters: some of these parameters are identical to those encountered in HPLC, such as the mobile phase polarity, while others are specific to SFC, as the density changes of the fluid, due to temperature and/or pressure variations. Additional effects are also related to the fluid compressibility, leading to unusual retention changes in SFC, for instance when flow rate or column length is varied. These additional effects can be minimised by working at lower temperatures in the subcritical domain, simplifying the understanding of retention behaviours. In these subcritical conditions, varied modifiers can be mixed to carbon dioxide, from hexane to methanol, allowing tuning the mobile phase polarity. With nonpolar modifiers, polar stationary phases are classically used. These chromatographic conditions are close to the ones of normal-phase LC. The addition of polar modifiers such as methanol or ACN increases the mobile phase polarity, allowing working with less polar stationary phases. In this case, despite the absence of water, retention behaviours generally follow the rules of RP LC. Moreover, because identical mobile phases can be used with all stationary phase types, from polar silica to nonpolar C18-bonded silica, the classical domains, RP and normal-phase, are easily brought together in SFC. A unified classification method based on the solvation parameter model is proposed to compare the stationary phase properties used with the same subcritical mobile phase.  相似文献   

7.
Preparative HPLC and HPLC-MS are well established as the methods of choice for purification of pharmaceutical library compounds. Recent advances in supercritical fluid chromatography (SFC) have now made SFC a viable alternative to HPLC for this application. One of the potential arguments for using SFC in place of, or in addition to, HPLC is that it may offer different selectivity and thus has the potential for improved separation success rates. In this paper, we examine relative success rates for SFC and HPLC in obtaining adequate selectivity for successful separation. Our results suggest that use of SFC in addition to HPLC may result in a slight (1-2%) improvement in success rate compared to use of HPLC alone.  相似文献   

8.
An automated packed-column semi-preparative supercritical fluid chromatography/mass spectrometry (SFC/MS) system incorporating mass-directed fraction collection has been designed and implemented as an alternative to preparative HPLC and preparative HPLC/MS (PrepLC/MS) for the purification of pharmaceutical compounds. The system incorporates a single quadrupole mass spectrometer and a supercritical fluid chromatograph. Separations were achieved using a binary solvent system consisting of carbon dioxide and methanol. Purification of SFC-separated compounds was achieved incorporating mass-directed fraction collection, enabling selective isolation of the target molecular weight compound and eliminating the collection of undesired compounds (e.g., by-products, excess starting materials, etc.). Cross contamination between fractions and recoveries of the system were investigated. Mass spectrometer ionization with basic mobile additives is discussed, and examples of preparative SFC/MS chiral separations are presented. Early experiences suggest SFC will be a powerful and complementary technique to HPLC for the purification of pharmaceutical compounds.  相似文献   

9.
Mobile phases in supercritical fluid chromatography (SFC) have low viscosities and high diffusion coefficients with respect to those of traditional high performance liquid chromatography (HPLC). These properties allow higher mobile phase flow rates and/or longer columns in SFC, resulting in rapid analyses and high efficiency separations. In addition, chiral SFC is becoming especially popular. Mass spectrometry (MS) is arguably the most popular "informative" detector for chromatographic separations. Most SFC/MS is performed with atmospheric pressure ionization (API) sources. Unlike LC/MS, the interface between the SFC column and the API source must allow control of the downstream (post-column) pressure while also providing good chromatographic fidelity. Here we compare and contrast the popular interfacing approaches. Some are simple, such as direct effluent introduction with no active back-pressure-regulator (BPR) in high speed bioanalytical applications. The pressure-regulating-fluid interface is more versatile and provides excellent chromatographic fidelity, but is less user friendly. The pre-BPR- split interface and an interface which provides total-flow-introduction with a mechanical BPR are good compromises between user friendliness and performance, and have become the most popular among practitioners. Applications of SFC/MS using these various interfaces are also discussed.  相似文献   

10.
After much development of stationary phase chemistry, in recent years the focus of many studies in HPLC has shifted to increase the efficiency and analysis speed. Ultra high pressure liquid chromatography (UHPLC) using sub-2 μm particles, and high temperature liquid chromatography (HTLC), using temperatures above 100°C have received much attention. These new approaches allow the use of flow rates higher than those classically used in HPLC, reducing the analysis duration. Due to the low viscosity of supercritical fluids, high velocities, i.e. high flow rates, can be achieved with classical pumping systems typically used in supercritical fluid chromatography (SFC). The effects of the flow rate increase with CO(2)/methanol mobile phase was studied on the inlet pressure, t(0), the retention factor of the compounds, and on the efficiency. Simple comparisons of efficiencies obtained at varied temperature between SFC and HPLC, with a packed column containing 5 μm particles, show the greater kinetic performances achieved with the CO(2)/methanol fluid, and underline specific behaviours of SFC, occurring for high flow rates and sub-ambient temperature. Some values (N/t(0)) are also compared to UHPLC data, showing that good performance can be achieved in SFC without applying drastic analytical conditions. Finally, simple kinetic plots (t(0) vs N) at constant column length are used to select combinations of temperature and flow rate necessary to achieve a required theoretical plate number.  相似文献   

11.
In supercritical fluid chromatography (SFC), the significant expansion of the mobile phase along the column causes the formation of axial and radial gradients of temperature. Due to these gradients, the mobile phase density, its viscosity, its velocity, its diffusion coefficients, etc. are not constant throughout the column. This results in a nonuniform flow velocity distribution, itself causing a loss of column efficiency in certain cases, even at low flow rates, as they do in HPLC. At high flow rates, an important deformation of the elution profiles of the sample components may occur. The model previously used to account satisfactorily for the retention of an unsorbed solute in SFC is applied to the modeling of the elution peak profiles of retained compounds. The numerical solution of the combined heat and mass balance equations provides the temperature and the pressure profiles inside the column and values of the retention time and the band profiles of retained compounds that are in excellent agreement with independent experimental data for large value of mobile phase reduced density. At low reduced densities, the band profiles can strongly depend on the column axial distribution of porosity.  相似文献   

12.
13.
The implementation of columns packed with sub-2 μm particles in supercritical fluid chromatography (SFC) is described using neat carbon dioxide as the mobile phase. A conventional supercritical fluid chromatograph was slightly modified to reduce extra column band broadening. Performances of a column packed with 1.8 μm C18-bonded silica particles in SFC using neat carbon dioxide as the mobile phase were compared with results obtained in ultra high performance liquid chromatography (UHPLC) using a dedicated chromatograph. As expected and usual in SFC, higher linear velocities than in UHPLC must be applied in order to reach optimal efficiency owing to higher diffusion coefficient of solutes in the mobile phase; similar numbers of theoretical plates were obtained with both techniques. Very fast separations of hydrocarbons are presented using two different alkyl-bonded silica columns.  相似文献   

14.
Summary Techniques and applications of analytical instruments combining a chromatographic technique, including liquid chromatography and supercritical fluid chromatography, with mass spectrometry (LC/MS and SFC/MS), that have appeared over the past five years, are reviewed and discussed. It is shown that still many different methods co-exist and have both specific advantages and limitations. SFC/MS appears easier to run for many compounds so far analysed by conventional LC/MS methods. On the other hand, new LC/MS methods that use fast atom bombardment or electrospray ionization have the greater potential for the investigation of polar biopolymers.  相似文献   

15.
In supercritical fluid chromatography (SFC) compressed gases in the region of their critical temperature are used as mobile phases. SFC has important advantages over gas chromatography (GC) for the separation of low-volatile or thermally unstable substances. Like high pressure liquid chromatography (HPLC) and gel chromatography, it is used for various special applications and preparative separations, e.g. in the petroleum industry and in the separation of oligomers. SFC is of great interest in fundamental research on fluid extraction and for the determination of the physicochemical properties of fluid systems. In this contribution the most important physicochemical, methodological, and instrumental principles of SFC are summarized; characteristic physicochemical applications are the determination of capacity ratios, partition coefficients, partial molar volumes, interaction second virial coefficients, and difusion coefficients.  相似文献   

16.
The general topic of supercritical fluid chromatography (SFC) is introduced, and historical aspects of its development are discussed. The physical properties of supercritical fluids, gases and liquids are tabulated. SFC is compared and contrasted with the classical forms of chromatography - gas chromatography (GC) and high performance liquid chromatography (HPLC). The selectivity of SFC, GC, and HPLC are discussed and compared. Instrumentation employed for supercritical fluid chromatography is depicted. A wide variety of SFC applications are introduced. New examples of the use of SFC for analysis of a variety of complex oligomeric mixtures indcluding polypropylene glycol, polysiloxanes, fluorocarbon oligomers (i.e. -3M's fluoro-chemical surfactant Fluorad 171, and Kel-F) and high molecular weight normal alcohols are shown. The use of SFC for separation of mono-, di-, and triglycerides at low operating temperatures is described. Lastly, the use of SFC for separations of complex hydrocarbon mixtures from liquid fuels, polycyclic aromatic hydrocarbons, synthetic alpha-olefins, and petroleum functional group separations are depicted.  相似文献   

17.
Packed column supercritical fluid chromatography (pSFC) is an attractive technique in drug discovery related analysis because it offers several advantages over the more commonly used high-performance liquid chromatography (HPLC) technique. The environmental-friendly CO2 mobile phase, the high-throughput capacity, the increased efficiency and the lower operational costs give SFC additional benefits over HPLC in analysis related to drug development. The latter technique is well established and has been used for decades in the pharmaceutical industry. On the other hand, SFC is still in its infancy, even though the technique has been known for decades and researchers are still discovering the possibilities and limitations of this technique.  相似文献   

18.
The dried roots of Rheum officinale Baill., named Dahuang in Chinese, has many pharmacological effects and has been widely used for the treatment of many diseases. To develop a harmless and eco-friendly method for the separation of components in Dahuang is of great interest for quality control and pharmacological study of Dahuang. A method for separation and purification of components in Dahuang using supercritical fluid chromatography (SFC) is established in this work. Samples were prepared by extraction of Dahuang powders with 20% H2SO4 and benzene under reflux. The extracts were obtained by evaporating benzene extracts and separating by SFC on YMC-Diol column using supercritical CO2 with CH3OH 4% (v/v) as the modifier. The flow rate of the mobile phase was 15?mL/min, the column pressure was 13?MPa, and the column temperature was 318?K. Cinnamic acid and five kinds of hydroxyanthraquinones including rhein, emodin, aloe emodin, chrysophanol, and physcion were obtained by SFC. The purities of the obtained compounds were all above 97% as determined by high performance liquid chromatography and their chemical structures were identified by nuclear magnetic resonance and mass spectrum. The thermodynamics of chromatographic process was also studied and it revealed that the SFC separation process of these compounds on YMC-Diol column was controlled by enthalpy.  相似文献   

19.
Several recently developed analytical techniques, based on high-end mass spectrometry and chromatography, for dealing with challenges in petroleum characterization are reported. Folded flight path time-of-flight mass spectrometry provides resolving power up to 100000, enabling accurate mass measurement for molecular formula determination with high confidence. Atmospheric pressure chemical ionization (APCI) can be used in both gas chromatography (GC, as APGC) and liquid chromatography (LC) for analyzing non-polar hydrocarbons as well as polar compounds. The improvement in chromatography facilitates the mass spectrometric analysis through online coupling. Comprehensive two-dimensional gas chromatography (GC×GC) resolves overlapping components, rendering accurate identification and quantitation. Supercritical fluid extraction has been developed as an alternative method to replace traditional solvent extraction methods and eliminate the use of large volumes of solvents that can be harmful to health and environment. Supercritical fluid chromatography (SFC) has been developed as a convergence of GC and LC chromatographic techniques. The use of SFC for heavy oils and residua has been demonstrated. Prospective developments in the use of mass spectrometric and chromatographic methods for petroleum characterization are also described.  相似文献   

20.
The design of a new interface to hyphen high efficiency supercritical fluid chromatography (SFC) and fast RPLC in a comprehensive configuration is described. SFC x RPLC is a viable alternative to normal phase (NP) LC x RPLC and is characterized by high orthogonality. Compared to NPLC x RPLC an additional advantage is the expansion of supercritical carbon dioxide (CO(2)) when exposed to atmospheric pressure leading to fractions consisting of solvents that are miscible with the second dimension RPLC mobile phase. The interface consists of a two-position/ten-port switching valve equipped with two packed octadecyl silica (C(18)) loops for effective trapping and focusing of the analytes after elution from the SFC dimension. The addition of a water make-up flow to the SFC effluent prior to entering the loops is of fundamental importance to efficiently focus the solutes on the C(18) material and to reduce interferences of expanded CO(2) gas on the second dimension separation. The features of the system are illustrated with the analysis of a lemon oil sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号