首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The hydroxylation of proline residues in collagen enhances the stability of the collagen triple helix. Previous X-ray diffraction analyses had demonstrated that the presence of an electron-withdrawing substituent on the pyrrolidine ring of proline residues has significant structural consequences [Panasik, N., Jr.; Eberhardt, E. S.; Edison, A. S.; Powell, D. R.; Raines, R. T. Int. J. Pept. Protein Res.1994, 44, 262-269]. Here, NMR and FTIR spectroscopy were used to ascertain kinetic and thermodynamic properties of N-acetyl-[β,γ-(13)C]D,L-proline methylester (1); N-acetyl-4(R)-hydroxy-L-proline [(13)C]methylester (2); and N-acetyl-4(R)-fluoro-L-proline methylester (3). The pK(a)'s of the nitrogen atom in the parent amino acids decrease in the order: proline (10.8) > 4(R)-hydroxy-L-proline (9.68) > 4(R)-fluoro-L-proline (9.23). In water or dioxane, amide I vibrational modes decrease in the order: 1 > 2 > 3. At 37 °C in dioxane, the rate constants for amide bond isomerization are greater for 3 than 1. Each of these results is consistent with the traditional picture of amide resonance coupled with an inductive effect that results in a higher bond order in the amide C=O bond and a lower bond order in the amide C-N bond. Further, at 37 °C in water or dioxane equilibrium concentrations of the trans isomer increase in the order: 1 < 2 < 3. Inductive effects may therefore have a significant impact on the folding and stability of collagen, which has a preponderance of hydroxyproline residues, all with peptide bonds in the trans conformation.  相似文献   

2.
Amide-amide hydrogen bonds have been implicated in directing protein folding and enhancing protein stability. Inversion transfer (13)C NMR spectroscopy and IR spectroscopy were used to compare the ability of various amide solvents and of water to alter the rate of the cis-trans isomerization of the prolyl peptide bond of Ac-Gly-[β,δ-(13)C]Pro-OMe and the amide I vibrational mode of [(13)C=O]Ac-Pro-OMe. The results indicate that secondary amides are significantly weaker hydrogen bond donors than is formamide or water. These results are most consistent with models for protein folding in which the formation of secondary structure is a cooperative process that follows hydrophobic collapse. These results also suggest that a hydrogen bond between a main-chain oxygen and an asparagine or glutamine sidechain may contribute more to protein stability than does a main-chain-main-chain hydrogen bond.  相似文献   

3.
A new triacid scaffold is described based on the cone-shaped cyclotriveratrylene (CTV) molecule that facilitates the triple helical folding of peptides containing either a unique blood platelet binding collagen sequence or collagen peptides composed of Pro-Hyp-Gly repeats. The latter were synthesized by segment condensation using Fmoc-Pro-Hyp-Gly-OH. Peptides were coupled to this CTV scaffold and also coupled to the Kemp's triacid (KTA) scaffold. After assembly of peptide H-Gly-[Pro-Hyp-Gly]2-Phe-Hyp-Gly-Glu(OAll)-Arg-Gly-Val-Glu (OAll)-Gly-[Pro-Hyp-Gly]2-NH2 (13) by an orthogonal synthesis strategy to both triacid scaffolds, followed by deprotection of the allyl groups, the molecular constructs spontaneously folded into a triple helical structure. In contrast, the non-assembled peptides did not. The melting temperature (Tm) of (+/-) CTV[CH2C(O)N(H)Gly-[Pro-Hyp-Gly]2-Phe-Hyp-Gly-Glu-Arg-Gly-Val-Glu-Gly- [Pro-Hyp-Gly]2-NH2]3 (14) is 19 degrees C, whereas KTA[Gly-Gly-[Pro-Hyp-Gly]2-Phe-Hyp-Gly-Glu-Arg-Gly-Val-Glu-Gly- [Pro-Hyp-Gly]2-NH2]3 (15) has a Tm of 20 degrees C. Thus, it was shown for the first time that scaffolds were also effective in stabilizing the triple helix of native collagen sequences. The different stabilizing properties of the two CTV enantiomers could be measured after coupling of racemic CTV triacid to the collagen peptide, and subsequent chromatographic separation of the diastereomers. After assembly of the two chiral CTV scaffolds to the model peptide H-Gly-Gly-(Pro-Hyp-Gly)5-NH2 (24), the (+)-enantiomer of CTV 28b was found to serve as a better triple helix-inducing scaffold than the (-)-enantiomer 28a. In addition to an effect of the chirality of the CTV scaffold, a certain degree of flexibility between the CTV cone and the folded peptide was also shown to be of importance. Restricting the flexibility from two to one glycine residues resulted in a significant difference between the two collagen mimics 20a and 20b, whereas the difference was only slight when two glycine residues were present between the CTV scaffold and the peptide sequence in collagen mimics 30a and 30b.  相似文献   

4.
The fluorinated olefinic peptide nucleic acid (F-OPA) system was designed as a peptide nucleic acid (PNA) analogue in which the base carrying amide moiety was replaced by an isostructural and isoelectrostatic fluorinated C-C double bond, locking the nucleobases in one of the two possible rotameric forms. By comparison of the base-pairing properties of this analogue with its nonfluorinated analogue OPA and PNA, we aimed at a closer understanding of the role of this amide function in complementary DNA recognition. Here we present the synthesis of the F-OPA monomer building blocks containing the nucleobases A, T, and G according to the MMTr/Acyl protecting group scheme. Key steps are a selective desymmetrization of the double bond in the monomer precursor via lactonization as well as a highly regioselective Mitsunobu reaction for the introduction of the bases. PNA decamers containing single F-OPA mutations and fully modified F-OPA decamers and pentadecamers containing the bases A and T were synthesized by solid-phase peptide chemistry, and their hybridization properties with complementary parallel and antiparallel DNA were assessed by UV melting curves and CD spectroscopic methods. The stability of the duplexes formed by the decamers containing single (Z)-F-OPA modifications with parallel and antiparallel DNA was found to be strongly dependent on their position in the sequence with T(m) values ranging from +2.4 to -8.1 degrees C/modification as compared to PNA. Fully modified F-OPA decamers and pentadecamers were found to form parallel duplexes with complementary DNA with reduced stability compared to PNA or OPA. An asymmetric F-OPA pentadecamer was found to form a stable self-complex (T(m) approximately 65 degrees C) of unknown structure. The generally reduced affinity to DNA may therefore be due to an increased propensity for self-aggregation.  相似文献   

5.
For the photomodulation of the collagen triple helix with an azobenzene clamp, we investigated various collagenous peptides consisting of ideal (Gly-Pro-Hyp) repeats and containing cysteine residues in various positions for a side chain-to-side chain crosslink with a suitable chromophore derivative. Comparative conformational analysis of these cysteine peptides indicated an undecarepeat peptide with two cysteine residues located in the central portion in i and i+7 positions and flanked by (Gly-Pro-Hyp) repeat sequences as the most promising for the cross-bridging experiments. In aqueous alcoholic solution the azobenzene-undecarepeat peptide formed a stable triple helix in equilibrium with the monomeric species as a trans-azobenzene isomer, whereas photoisomerization to the cis isomer leads to unfolding of at least part of the triple helix. Furthermore, the residual supercoiled structure acts like an intermolecular knot, thus making refolding upon cis-to-trans isomerization a concentration-independent fast event. Consequently, these photoswitchable collagenous systems should be well suited for time-resolved studies of folding/unfolding of the collagen triple helix under variable thermodynamic equilibria.  相似文献   

6.
A truncated version of the GCN4 coiled-coil peptide has been studied by ultraviolet resonance Raman (UVRR) spectroscopy with 197 nm excitation, where amide modes are optimally enhanced. Although the CD melting curve could be satisfactorily described with a two-state transition having Tm = 30 degrees C, singular value decomposition of the UVRR data yielded three principal components, whose temperature dependence implicates an intermediate form between the folded and unfolded forms, with formation and melting temperatures of 10 and 40 degrees C. Two alpha-helical amide III bands, at 1340 and 1300 cm(-1), melted out selectively at 10 and 40 degrees C, respectively, and are assigned to hydrated and unhydrated helical regions. The hydrated regions are proposed to be melted in the intermediate form, while the unhydrated regions are intact. Time-resolved UVRR spectra following laser-induced temperature jumps revealed two relaxations, with time constants of 0.2 and 15 mus. These are suggested to reflect the melting times of hydrated and unhydrated helices. The unhydrated helical region may be associated with a 14-residue "trigger" sequence that has been identified in the C-terminal half of GCN4. Dehydration of helices may be a key step in the folding of coiled-coils.  相似文献   

7.
The thermal stability of UVB irradiated collagen in bovine lens capsules and in bovine cornea has been investigated by differential scanning calorimetry (DSC). During UVB irradiation the lens capsules and cornea were immersed in water to keep the collagen in a fully hydrated condition at all times. UV irradiation induced changes in collagen which caused both stabilization and destabilization of the collagen structure. The helix-coil transition for non-irradiated collagen in cornea occurred near 66 degrees C, instead for the irradiated one for 3h it occurred at 69 degrees C. After irradiating for longer times (20-96h) the helix-coil transition peak occurred at much lower temperatures. The peak was very broad and suggested that collagen was reduced by UV to different polypeptides of different molecular weight and different lower thermal stabilities. The irradiation of lens capsules with UVB light in vitro resulted in changes in the thermal properties of type-IV collagen consistent with increased cross-linking. DSC of lens capsules showed two major peaks at melting temperatures at 54 degrees C Tm1 and 78 degrees C Tm2, which can be attributed to the denaturation of the triple helix and 7S domains, respectively. UVB irradiation of lens capsules in vitro for 6 h caused an increase in Tm1 from 54 to 57 degrees C. The higher temperature required to denature the type-IV collagen after irradiation in vitro suggested an increase of intermolecular cross-linking.  相似文献   

8.
Collagen-like peptides of the type (Pro-Pro-Gly)(10) fold into stable triple helices. An electron-withdrawing substituent at the H(gamma)(3) ring position of the second proline residue stabilizes these triple helices. The aim of this study was to reveal the structural and energetic origins of this effect. The approach was to obtain experimental NMR data on model systems and to use these results to validate computational chemical analyses of these systems. The most striking effects of an electron-withdrawing substituent are on the ring pucker of the substituted proline (Pro(i)) and on the trans/cis ratio of the Xaa(i-1)-Pro(i) peptide bond. NMR experiments demonstrated that N-acetylproline methyl ester (AcProOMe) exists in both the C(gamma)-endo and C(gamma)-exo conformations (with the endo conformation slightly preferred), N-acetyl-4(R)-fluoroproline methyl ester (Ac-4R-FlpOMe) exists almost exclusively in the C(gamma)-exo conformation, and N-acetyl-4(S)-fluoroproline methyl ester (Ac-4S-FlpOMe) exists almost exclusively in the C(gamma)-endo conformation. In dioxane, the K(trans/cis) values for AcProOMe, Ac-4R-FlpOMe, and Ac-4S-FlpOMe are 3.0, 4.0, and 1.2, respectively. Density functional theory (DFT) calculations with the (hybrid) B3LYP method were in good agreement with the experimental data. Computational analysis with the natural bond orbital (NBO) paradigm shows that the pucker preference of the substituted prolyl ring is due to the gauche effect. The backbone torsional angles, phi and psi, were shown to correlate with ring pucker, which in turn correlates with the known phi and psi angles in collagen-like peptides. The difference in K(trans/cis) between AcProOMe and Ac-4R-FlpOMe is due to an n-->pi interaction associated with the Bürg-Dunitz trajectory. The decrease in K(trans/cis) for Ac-4S-FlpOMe can be explained by destabilization of the trans isomer because of unfavorable electronic and steric interactions. Analysis of the results herein along with the structures of collagen-like peptides has led to a theory that links collagen stability to the interplay between the pyrrolidine ring pucker, phi and psi torsional angles, and peptide bond trans/cis ratio of substituted proline residues.  相似文献   

9.
The single-conformation spectroscopy of two model γ-peptides has been studied under jet-cooled conditions in the gas phase. The methyl-capped triamides, Ac-γ(2)-hPhe-γ(2)-hAla-NHMe and Ac-γ(2)-hAla-γ(2)-hPhe-NHMe, were probed by resonant two-photon ionization (R2PI) and resonant ion-dip infrared (RIDIR) spectroscopies. Four conformers of Ac-γ(2)-hPhe-γ(2)-hAla-NHMe and three of Ac-γ(2)-hAla-γ(2)-hPhe-NHMe were observed and spectroscopically interrogated. On the basis of comparison with the predictions of density functional theory calculations employing a dispersion-corrected functional (ωB97X-D/6-311++G(d,p)), all seven conformers have been assigned to particular conformational families. The preference for formation of nine-membered rings (C9) observed in a previous study [James, W. H., III et al., J. Am. Chem. Soc. 2009, 131, 14243] of the smaller analog, Ac-γ(2)-hPhe-NHMe, carries over to these triamides, with four of the seven conformers forming C9/C9 sequential double-ring structures, and one conformer a C9/C14 bifurcated double ring. The remaining two conformers form C7/C7/C14 H-bonded cycles involving all three amide NH groups, unprecedented in other peptides and peptidomimetics. The amide groups in these structures form a H-bonded triangle with the two trimethylene bridges forming loops above and below the molecule's midsection. The structure is a natural extension of amide stacking, with the two terminal amides blocked from forming the amide tristack by formation of the C14 H-bond. Pair interaction energy decomposition analysis based on the fragment molecular orbital method (FMO-PIEDA) is used to determine the nonbonded contributions to the stabilization of these conformers. Natural bond orbital (NBO) analysis identifies amide stacking with a pair of n → π* interactions between the nitrogen lone pairs and π* orbitals on the carbonyl of the opposing amide groups.  相似文献   

10.
Racemic Ac-Gly-[β,δ-(13)C]Pro-OMe was synthesized, and the kinetics and thermodynamics of the isomerization of its prolyl peptide bond were determined in nine solvents by using NMR and IR spectroscopy. The free energy of activation is 1.3 kcal/mol larger in water than in aprotic solvents, and correlates with the ability of a solvent to donate a hydrogen bond but not with solvent polarity. These results are consistent with conventional pictures of amide resonance, which require transfer of charge between oxygen and nitrogen during isomerization. Similar medium effects may modulate the stability of planar peptide bonds in the active site of peptidyl-prolyl cis-trans isomerases (PPIases) and during the folding, function, or lysis of proteins.  相似文献   

11.
Collagen sequences frequently deviate from the most thermally stable (Gly-Pro-Hyp)(n) pattern, with many mutations causing osteogenesis imperfecta (or "brittle bone disease"). The effects of collagen mutations have been studied in short peptides. The analysis of this work is problematic, however, as triple-helices fray from their ends, making the coil/triple-helix equilibrium non-two-state. Here, I develop a statistical thermodynamic model to handle this equilibrium that is applicable to peptides that follow the (G-X-Y)(n) pattern, where Gly is present at every third position and where all three chains are identical. Parameters for substitutions at each position are included, as well as a penalty for initiating triple-helix formation. The model is applied to equilibrium experimental data at 37 degrees C to show that the extension of a triple-helix by a three residue unit stabilizes the triple-helix by 0.76 kcal/mol for Gly-Pro-Hyp and 0.33 kcal/mol for Gly-Pro-Pro. The replacement of Hyp by Arg, Asp, or Trp destabilizes the triple-helix by 1.5, 2.4, and 2.9 kcal/mol, respectively, where the substitution is present once in each chain. The model can thus be used to quantitatively interpret data on collagen peptides, giving free energies that can help rationalize mutations that affect collagen stability, and to design new collagen sequences.  相似文献   

12.
Understanding the structure, folding, and stability of collagen is complex because of its length and variations in the amino acid (AA) sequence composition. It is well known that the basic constituent of the collagen helix is the triplet repeating sequence of the form Gly-X(AA)-Y(AA). On the basis of previous models and with the frequency of occurrence of the triplets, the ((Gly-Pro-Hyp)n)3 (where n is the number of triplets) sequence replicate has been chosen as the model for the most stable form of the collagen-like sequence. With a view to understand the role of sequence length (or the number of triplets) on the stability of collagen, molecular dynamics simulations have been carried out by varying the number of triplet units on the model collagen-like peptides. The results reveal that five triplets are required to form the stable triple helix. Further analysis shows that the intermolecular structural rigidity of the imino acid residues, hydrogen bonding, and water structure around the three chains of the triple helix play the dominant roles on its structure, folding, and stabilization.  相似文献   

13.
[structure: see text] Collagen is the most abundant protein in animals. Interstrand N-H...O=C hydrogen bonds between backbone amide groups form a ladder in the middle of the collagen triple helix. Isosteric replacement of the hydrogen-bond-donating amide with an ester or (E)-alkene markedly decreases the conformational stability of the triple helix. Thus, this recurring hydrogen bond is critical to the structural integrity of collagen. In this context, an ester isostere confers more stability than does an (E)-alkene.  相似文献   

14.
We used UV resonance Raman (UVRR) to examine the spatial dependence of the T-jump secondary structure relaxation of an isotopically labeled 21-residue mainly Ala peptide, AdP. The AdP penultimate Ala residues were perdeuterated, leaving the central residues hydrogenated, to allow separate monitoring of melting of the middle versus the end peptide bonds. For 5 to 30 degrees C T-jumps, the central peptide bonds show a approximately 2-fold slower relaxation time (189 +/- 31 ns) than do the exterior peptide bonds (97 +/- 15 ns). In contrast, for a 20 to 40 degrees C T-jump, the central peptide bond relaxation appears to be faster (56 +/- 6 ns) than that of the penultimate peptide bonds (131 +/- 46 ns). We show that, if the data are modeled as a two-state transition, we find that only exterior peptide bonds show anti-Arrhenius folding behavior; the middle peptide bonds show both normal Arrhenius-like folding and unfolding. This anti-Arrhenius behavior results from the involvement of pi-bulges/helices and 3(10)-helix states in the melting. The unusual temperature dependence of the (un)folding rates of the interior and exterior peptide bonds is due to the different relative (un)folding rates of 3(10)-helices, alpha-helices, and pi-bulges/helices. Pure alpha-helix unfolding rates are approximately 12-fold slower (approximately 1 micros) than that of pi-bulges and 3(10)-helices. In addition, we also find that the alpha-helix is most stable at the AdP N-terminus where eight consecutive Ala occur, whereas the three hydrophilic Arg located in the middle and at the C-terminus destabilize the alpha-helix in these regions and induce defects such as pi-bulges and 3(10)-helices.  相似文献   

15.
Trp-cage, a synthetic 20 residue polypeptide, is proposed to be an ultrafast folding synthetic miniprotein which utilizes tertiary contacts to define its native conformation. We utilized UV resonance Raman spectroscopy (UVRS) with 204 and 229 nm excitation to follow its thermal melting. Our results indicate that Trp-cage melting is complex, and it is not a simple two-state process. Using 204 nm excitation we probe the peptide secondary structure and find the Trp-cage's alpha-helix shows a broad melting curve where on average four alpha-helical amide bonds melt upon a temperature increase from 4 to 70 degrees C. Using 229 nm excitation we probe the environment of the Trp side chain and find that its immediate environment becomes more compact as the temperature is increased from 4 to 20 degrees C; however, further temperature increases lead to exposure of the Trp to water. The chi(2) angle of the Trp side chain remains invariant throughout the entire temperature range. Previous kinetic results indicated a single-exponential decay in the 4-70 degrees C temperature range, suggesting that Trp-cage behaves as a two-state folder. However, this miniprotein does not show clear two-state behavior in our steady-state studies. Rather it shows a continuous distribution of steady-state spectral parameters. Only the alpha-helix melting curve even hints of a cooperative transition. Possibly, the previous kinetic results monitor only a small region of the Trp-cage which locally appears two-state. This would then argue for spatially decoupled folding even for this small peptide.  相似文献   

16.
The temperature-dependent dissociation of neutral salt-soluble collagen into its component chains was measured in 0.6-1.6 M urea solutions at pH 7.3. The temperature-dependent association of the same radioactively labeled collagen into fibers was measured in 0-0.4 M urea solutions, pH 7.3. The effect of urea on the temperature, Tm(G), for half dissociation into chains was small, and the value extrapolated to zero urea concentration was 39 degrees C. In contrast, the effect of urea on the temperature, Tm(F), for half association into fibers was large, and the value at zero urea concentration was 30 degrees C. We conclude that while body temperature provides excellent conditions for the matching of collagen chains to form molecules, the conditions are not optimal for the formation of highly ordered fibers. The large effects of 0.1 M urea suggest that other factors in vivo may help to destabilize mismatched molecular association during fiber growth. Alternately this might be facilitated by parts of the extension peptides of procollagen.  相似文献   

17.
X-ray crystallography of collagen model peptides has provided high-resolution structures of the basic triple-helical conformation and its water-mediated hydration network. Vibrational spectroscopy provides a useful bridge for transferring the structural information from X-ray diffraction to collagen in its native environment. The vibrational mode most useful for this purpose is the amide I mode (mostly peptide bond C=O stretch) near 1650 cm-1. The current study refines and extends the range of utility of a novel simulation method that accurately predicts the infrared (IR) amide I spectral contour from the three-dimensional structure of a protein or peptide. The approach is demonstrated through accurate simulation of the experimental amide I contour in solution for both a standard triple helix, (Pro-Pro-Gly)10, and a second peptide with a Gly --> Ala substitution in the middle of the chain that models the effect of a mutation in the native collagen sequence. Monitoring the major amide I peak as a function of temperature gives sharp thermal transitions for both peptides, similar to those obtained by circular dichroism spectroscopy, and the Fourier transform infrared (FTIR) spectra of the unfolded states were compared with polyproline II. The simulation studies were extended to model early stages of thermal denaturation of (Pro-Pro-Gly)10. Dihedral angle changes suggested by molecular dynamics simulations were made in a stepwise fashion to generate peptide unwinding from each end, which emulates the effect of increasing temperature. Simulated bands from these new structures were then compared to the experimental bands obtained as temperature was increased. The similarity between the simulated and experimental IR spectra lends credence to the simulation method and paves the way for a variety of applications.  相似文献   

18.
The zinc thiolate complex [Tm(Ph)]ZnSCH2C(O)N(H)Ph, which features a tetrahedral [ZnS4] motif analogous to that of the Ada DNA repair protein, may be obtained by the reaction of Zn(NO3)2 with [Tm(Ph)]Li and Li[SCH2C(O)N(H)Ph] ([Tm(Ph)] = tris(2-mercapto-1-phenylimidazolyl)hydroborato ligand). Structural characterization of [Tm(Ph)]ZnSCH2C(O)N(H)Ph by X-ray diffraction demonstrates that the molecule exhibits an intramolecular N-H...S hydrogen bond between the amide N-H group and thiolate sulfur atom, a structure that is reproduced by density functional theory (DFT) calculations. The thiolate ligand of [Tm(Ph)]ZnSCH2C(O)N(H)Ph is subject to alkylation, a reaction that is analogous to the function of the Ada DNA repair protein. Specifically, [Tm(Ph)]ZnSCH2C(O)N(H)Ph reacts with MeI to yield PhN(H)C(O)CH2SMe and [Tm(Ph)]ZnI, a reaction which is characterized by second-order kinetics that is consistent with either (i) an associative mechanism or (ii) a stepwise dissociative mechanism in which the alkylation step is rate determining. Although the kinetics studies are incapable of distinguishing between these possibilities, a small normal kinetic isotope effect of kH/kD = 1.16(1) at 0 degrees C for the reaction of [Tm(Ph)]ZnSCH2C(O)N(H*)Ph (H* = H, D) with MeI is suggestive of a dissociative mechanism on the basis of DFT calculations. In particular, DFT calculations demonstrate that a normal kinetic isotope effect requires thiolate dissociation because it results in the formation of [PhN(H)C(O)CH2S]- which, as an anion, exhibits a stronger N-H...S hydrogen bonding interaction than that in [Tm(Ph)]ZnSCH2C(O)N(H)Ph. Correspondingly, mechanisms that involve direct alkylation of coordinated thiolate are predicted to be characterized by kH/kD < or = 1 because the reaction involves a reduction of the negative charge on sulfur and hence a weakening of the N-H...S hydrogen bonding interaction.  相似文献   

19.
Cold denaturation is a thermodynamic phenomenon resulting from a difference in the heat capacities, DeltaCp, of the folded and unfolded states of a macromolecule. Whereas this phenomenon has been extensively studied in proteins, it has been thought not to occur in nucleic acids due to a negligible DeltaCp of folding. Questioning the validity of this assumption, the low-temperature structure of the hammerhead ribozyme, a small catalytic RNA, was investigated by circular dichroism spectroscopy. In the presence of 10 mM Mg2+ at pH 5.0 and 40% methanol, a cold unfolding event likely corresponding to tertiary structure loss was observed with a Tm of -20 degrees C. In 500 mM NaCl at pH 6.6, and 40% methanol, large-scale unfolding of the ribozyme at both hot (Tm = 53 degrees C) and cold (Tm = -1 degrees C) temperatures occurred. Fitting of these data to a two-state model allowed determination of DeltaCp = 3.4 kJ mol-1 K-1, corresponding to >/=0.18 kJ K-1 (mol base pair)-1, in good agreement with recently published calorimetric values for DNA duplexes. These results constitute the first direct observation of cold denaturation of a nucleic acid, and point to the importance of DeltaCp terms in the thermodynamics of nucleic acid folding.  相似文献   

20.
Resonant two-photon ionization (R2PI), IR-UV holeburning (IR-UV), and resonant ion-dip infrared spectroscopy (RIDIRS) have been used to record mass-selected, single-conformation ultraviolet and infrared spectra of three simple diamide derivatives of γ-amino acids as isolated molecules cooled in a supersonic expansion. This work builds on an earlier study of Ac-γ(2)-hPhe-NHMe (James, W. H., III, et al. J. Am. Chem. Soc. 2009, 131, 14243), which showed that this methyl-capped γ-peptide forms amide-stacked conformations that are similar in stability to H-bonded conformations containing a C9 ring and more stable than C7 H-bonded ring structures. Among the γ-peptides discussed here, Ac-γ(2)-hPhe-N(Me)(2) contains an additional methyl group relative to the previously studied Ac-γ(2)-hPhe-NHMe and therefore lacks the amide NH group responsible for C9 ring formation. Three conformations of Ac-γ(2)-hPhe-N(Me)(2) are observed, all of which are amide-stacked structures. In a second new molecule, Ac-γ(2)-hPhe-NH(iPr), the C-terminal NHMe group of Ac-γ(2)-hPhe-NHMe is replaced with an NH(iPr) group. Three conformations of Ac-γ(2)-hPhe-NH(iPr) are observed, all of which are C9 H-bonded structures. The dramatic difference between C-terminal NHMe and NH(iPr) reveals the delicate balance of noncovalent forces within these γ-peptides. The third molecule we examined is a gabapentin-derived diamide (designated 1), which contains a phenylacyl group at the N-terminus and an N(Me)(2) group at the C-terminus; the latter precludes C9 H bonding. Comparison of 1 with Ac-γ(2)-hPhe-N(Me)(2) allows us to examine the impact of the backbone substitution pattern (monosubstitution at carbon-2 vs disubstitution at carbon-3) on the competition between the C7 H-bonded and the amide-stacked conformation. In this case, only C7 rings are observed. The different gas-phase behaviors observed among the molecules analyzed here offer insight on the intrinsic conformational propensities of the γ-peptide backbone, information that provides a foundation for future foldamer design efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号