首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The implementation of molecular dynamics (MD) with our physics-based protein united-residue (UNRES) force field, described in the accompanying paper, was extended to Langevin dynamics. The equations of motion are integrated by using a simplified stochastic velocity Verlet algorithm. To compare the results to those with all-atom simulations with implicit solvent in which no explicit stochastic and friction forces are present, we alternatively introduced the Berendsen thermostat. Test simulations on the Ala(10) polypeptide demonstrated that the average kinetic energy is stable with about a 5 fs time step. To determine the correspondence between the UNRES time step and the time step of all-atom molecular dynamics, all-atom simulations with the AMBER 99 force field and explicit solvent and also with implicit solvent taken into account within the framework of the generalized Born/surface area (GBSA) model were carried out on the unblocked Ala(10) polypeptide. We found that the UNRES time scale is 4 times longer than that of all-atom MD simulations because the degrees of freedom corresponding to the fastest motions in UNRES are averaged out. When the reduction of the computational cost for evaluation of the UNRES energy function is also taken into account, UNRES (with hydration included implicitly in the side chain-side chain interaction potential) offers about at least a 4000-fold speed up of computations relative to all-atom simulations with explicit solvent and at least a 65-fold speed up relative to all-atom simulations with implicit solvent. To carry out an initial full-blown test of the UNRES/MD approach, we ran Berendsen-bath and Langevin dynamics simulations of the 46-residue B-domain of staphylococcal protein A. We were able to determine the folding temperature at which all trajectories converged to nativelike structures with both approaches. For comparison, we carried out ab initio folding simulations of this protein at the AMBER 99/GBSA level. The average CPU time for folding protein A by UNRES molecular dynamics was 30 min with a single Alpha processor, compared to about 152 h for all-atom simulations with implicit solvent. It can be concluded that the UNRES/MD approach will enable us to carry out microsecond and, possibly, millisecond simulations of protein folding and, consequently, of the folding process of proteins in real time.  相似文献   

2.
Molecular dynamics (MD) simulations generate a canonical ensemble only when integration of the equations of motion is coupled to a thermostat. Three extended phase space thermostats, one version of Nose-Hoover and two versions of Nose-Poincare, are compared with each other and with the Berendsen thermostat and Langevin stochastic dynamics. Implementation of extended phase space thermostats was first tested on a model Lennard-Jones fluid system; subsequently, they were implemented with our physics-based protein united-residue (UNRES) force field MD. The thermostats were also implemented and tested for the multiple-time-step reversible reference system propagator (RESPA). The velocity and temperature distributions were analyzed to confirm that the proper canonical distribution is generated by each simulation. The value of the artificial mass constant, Q, of the thermostat has a large influence on the distribution of the temperatures sampled during UNRES simulations (the velocity distributions were affected only slightly). The numerical stabilities of all three algorithms were compared with each other and with that of microcanonical MD. Both Nose-Poincare thermostats, which are symplectic, were not very stable for both the Lennard-Jones fluid and UNRES MD simulations started from nonequilibrated structures which implies major changes of the potential energy throughout a trajectory. Even though the Nose-Hoover thermostat does not have a canonical symplectic structure, it is the most stable algorithm for UNRES MD simulations. For UNRES with RESPA, the "extended system inside-reference system propagator algorithm" of the RESPA implementation of the Nose-Hoover thermostat was the only stable algorithm, and enabled us to increase the integration time step.  相似文献   

3.
Reverse nonequilibrium molecular dynamics to calculate the shear viscosity of Lennard-Jones liquids was extended to simulations at constant number of particles, constant volume, and constant pressure using a Berendsen thermostat and a Berendsen manostat. Using additional systems such as water and hexane, we also report on the performance of shear viscosity calculations of systems with electrostatic and nontrivial intramolecular interactions when a manostat is applied. We compare the shear viscosities of simulations using no coupling, only temperature coupling, and temperature and pressure coupling and characterize discrepancies, where observed. From this, we deduce guidelines for when and how manostats can be usefully applied in reverse nonequilibrium simulations.  相似文献   

4.
The influences of temperature, friction, and random forces on the folding of protein A have been analyzed. A series of all-atom molecular dynamics folding simulations with the Amber ff99 potential and Generalized Born solvation, starting from the fully extended chain, were carried out for temperatures from 300 to 500 K, using (a) the Berendsen thermostat (with no explicit friction or random forces) and (b) Langevin dynamics (with friction and stochastic forces explicitly present in the system). The simulation temperature influences the relative time scale of the major events on the folding pathways of protein A. At lower temperatures, helix 2 folds significantly later than helices 1 and 3. However, with increasing temperature, the folding time of helix 2 approaches the folding times of helices 1 and 3. At lower temperatures, the complete formation of secondary and tertiary structure is significantly separated in time whereas, at higher temperatures, they occur simultaneously. These results suggest that some earlier experimental and theoretical observations of folding events, e.g., the order of helix formation, could depend on the temperature used in those studies. Therefore, the differences in temperature used could be one of the reasons for the discrepancies among published experimental and computational studies of the folding of protein A. Friction and random forces do not change the folding pathway that was observed in the simulations with the Berendsen thermostat, but their explicit presence in the system extends the folding time of protein A.  相似文献   

5.
6.
Gas-liquid nucleation of 1000 Lennard-Jones atoms is simulated to evaluate temperature regulation methods and methods to obtain nucleation rate. The Berendsen and the Andersen thermostats are compared. The Berendsen thermostat is unable to control the temperature of clusters larger than the critical size. Independent of the thermostating method the velocities of individual atoms and the translational velocities of clusters up to at least six atoms are accurately described by the Maxwell velocity distribution. Simulations with the Andersen thermostat yield about two times higher nucleation rates than those with the Berendsen thermostat. Nucleation rate is extracted from the simulations by direct observation of times of nucleation onset and by the method of Yasuoka and Matsumoto [J. Chem. Phys. 109, 8451 (1998)]. Compared to the direct observation, the nucleation rates obtained from the method of Yasuoka and Matsumoto are higher by a factor of 3.  相似文献   

7.
In this article, implementation of periodic boundary conditions (PBC) into physics‐based coarse‐grained UNited RESidue (UNRES) force field is presented, which replaces droplet‐like restraints previously used. Droplet‐like restraints are necessary to keep multichain systems together and prevent them from dissolving to infinitely low concentration. As an alternative for droplet‐like restrains cuboid PBCs with imaging of the molecules were introduced. Owing to this modification, artificial forces which arose from restraints keeping a droplet together were eliminated what leads to more realistic trajectories. Due to computational reasons cutoff and smoothing functions were introduced on the long range interactions. The UNRES force field with PBC was tested by performing microcanonical simulations. Moreover, to asses the behavior of the thermostat in PBCs Langevin and Berendsen thermostats were studied. The influence of PBCs on association pattern was compared with droplet‐like restraints on the ββα hetero tetramer 1 protein system. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Quasiresonance involves a slow "external" switching on and off of an interaction between internal degrees of freedom described by action-angle variables having approximate resonances. The resonances or near-resonances spawn slow coordinates that fail to be adiabatic, but the remaining coordinates may be fast enough to have conserved actions. The interaction either can be imposed externally as a time dependent coupling or can arise autonomously due to interactions with other degrees of freedom. A resonance transformation into slow and fast angles reveals the action corresponding to the fast angle is adiabatic and conserved to very high accuracy. This paper extends our work on quasiresonance to new systems and regimes, including the He-H2 system, collisions with a periodic lattice, perturbative interactions, and discussion of quasiresonance in higher dimensional systems.  相似文献   

9.
10.
11.
Molecular dynamics (MD) simulation based on Langevin equation has been widely used in the study of structural, thermal properties of matter in different phases. Normally, the atomic dynamics are described by classical equations of motion and the effect of the environment is taken into account through the fluctuating and frictional forces. Generally, the nuclear quantum effects and their coupling to other degrees of freedom are difficult to include in an efficient way. This could be a serious limitation on its application to the study of dynamical properties of materials made from light elements, in the presence of external driving electrical or thermal fields. One example of such system is single molecule dynamics on metal surface, an important system that has received intense study in surface science. In this review, we summarize recent effort in extending the Langevin MD to include nuclear quantum effect and their coupling to flowing electrical current. We discuss its applications in the study of adsorbate dynamics on metal surface, current-induced dynamics in molecular junctions, and quantum thermal transport between different reservoirs.  相似文献   

12.
The path integral molecular dynamics (PIMD) method provides a convenient way to compute the quantum mechanical structural and thermodynamic properties of condensed phase systems at the expense of introducing an additional set of high frequency normal modes on top of the physical vibrations of the system. Efficiently sampling such a wide range of frequencies provides a considerable thermostatting challenge. Here we introduce a simple stochastic path integral Langevin equation (PILE) thermostat which exploits an analytic knowledge of the free path integral normal mode frequencies. We also apply a recently developed colored noise thermostat based on a generalized Langevin equation (GLE), which automatically achieves a similar, frequency-optimized sampling. The sampling efficiencies of these thermostats are compared with that of the more conventional Nosé-Hoover chain (NHC) thermostat for a number of physically relevant properties of the liquid water and hydrogen-in-palladium systems. In nearly every case, the new PILE thermostat is found to perform just as well as the NHC thermostat while allowing for a computationally more efficient implementation. The GLE thermostat also proves to be very robust delivering a near-optimum sampling efficiency in all of the cases considered. We suspect that these simple stochastic thermostats will therefore find useful application in many future PIMD simulations.  相似文献   

13.
14.
For two methods commonly used to achieve canonical-ensemble sampling in a molecular-dynamics simulation, the Langevin thermostat and the Andersen [H. C. Andersen, J. Chem. Phys. 72, 2384 (1980)] thermostat, we observe, as have others, synchronization of initially independent trajectories in the same potential basin when the same random number sequence is employed. For the first time, we derive the time dependence of this synchronization for a harmonic well and show that the rate of synchronization is proportional to the thermostat coupling strength at weak coupling and inversely proportional at strong coupling with a peak in between. Explanations for the synchronization and the coupling dependence are given for both thermostats. Observation of the effect for a realistic 97-atom system indicates that this phenomenon is quite general. We discuss some of the implications of this effect and propose that it can be exploited to develop new simulation techniques. We give three examples: efficient thermalization (a concept which was also noted by Fahy and Hamann [S. Fahy and D. R. Hamann, Phys. Rev. Lett. 69, 761 (1992)]), time-parallelization of a trajectory in an infrequent-event system, and detecting transitions in an infrequent-event system.  相似文献   

15.
16.
Parallel tempering, also known as replica exchange molecular dynamics (REMD), has recently been successfully used to study the structure and thermodynamic properties of biomolecules such as peptides and small proteins. For large systems, however, applying REMD can be costly since the number of replicas needed increases as the square root of the number of degrees of freedom in the system. Often, enhanced sampling is only needed for a subset of atoms, such as a loop region of a large protein or a small ligand binding to a receptor. In such applications, it is often reasonable to assume a weak dependence of the structure of the larger region on the instantaneous conformation of the smaller region of interest. For these cases, we derived two variant replica exchange methods, partial replica exchange molecular dynamics (PREMD) and local replica exchange molecular dynamics (LREMD). The Hamiltonian for the system is separated, with replica exchange carried out only for terms involving the subsystem of interest while the remainder of the system is maintained at a single temperature. The number of replicas required for efficient exchange thus depends on the number of degrees of freedom in the fragment needing refinement rather than on the size of the full system. The method can be applied to much larger systems than was previously practical. This also provides a means to preserve the integrity of the structure outside the refinement region without introduction of restraints. LREMD takes this weak coupling approximation a step further, employing only a single representation of the large fragment that simultaneously interacts with all of the replicas of the subsystem of interest. This is obtained by combining replica exchange with the locally enhanced sampling approximation (LES), reducing the computational expense of replica exchange simulations to near that of a single standard molecular dynamics (MD) simulation. Use of LREMD also permits the use of LES without requiring the specification of a single temperature, a known difficulty for standard LES simulations. We tested these two methods on the loop region of an RNA hairpin model system and find significant advantages over standard MD and REMD simulations.  相似文献   

17.
Molecular motions of free and pheromone-bound mouse major urinary protein I, previously investigated by NMR relaxation, were simulated in 30 ns molecular dynamics (MD) runs. The backbone flexibility was described in terms of order parameters and correlation times, commonly used in the NMR relaxation analysis. Special attention was paid to the effect of conformational changes on the nanosecond time scale. Time-dependent order parameters were determined in order to separate motions occurring on different time scales. As an alternative approach, slow conformational changes were identified from the backbone torsion angle variances, and "conformationally filtered" order parameters were calculated for well-defined conformation states. A comparison of the data obtained for the free and pheromone-bound protein showed that some residues are more rigid in the bound form, but a larger portion of the protein becomes more flexible upon the pheromone binding. This finding is in general agreement with the NMR results. The higher flexibility observed on the fast (fs-ps) time scale was typically observed for the residues exhibiting higher conformational freedom on the ns time scale. An inspection of the hydrogen bond network provided a structural explanation for the flexibility differences between the free and pheromone-bound proteins in the simulations.  相似文献   

18.
We present a method for simulating clusters or molecules subjected to an external pressure, which is exerted by a pressure-transmitting medium. It is based on the canonical Langevin thermostat, but extended in such a way that the Brownian forces are allowed to operate only from the region exterior to the cluster. We show that the frictional force of the Langevin thermostat is linked to the pressure of the reservoir in a unique way, and that this property manifests itself when the particle it acts upon is not pointlike but has finite dimensions. By choosing appropriately the strength of the random forces and the friction coefficient, both temperature and pressure can be controlled independently. We illustrate the capabilities of this new method by calculating the compressibility of small gold clusters under pressure.  相似文献   

19.
We report experimental and theoretical studies on water and protein dynamics following photoexcitation of apomyoglobin. Using site-directed mutation and with femtosecond resolution, we experimentally observed relaxation dynamics with a biphasic distribution of time scales, 5 and 87 ps, around the site Trp7. Theoretical studies using both linear response and direct nonequilibrium molecular dynamics (MD) calculations reproduced the biphasic behavior. Further constrained MD simulations with either frozen protein or frozen water revealed the molecular mechanism of slow hydration processes and elucidated the role of protein fluctuations. Observation of slow water dynamics in MD simulations requires protein flexibility, regardless of whether the slow Stokes shift component results from the water or protein contribution. The initial dynamics in a few picoseconds represents fast local motions such as reorientations and translations of hydrating water molecules, followed by slow relaxation involving strongly coupled water-protein motions. We observed a transition from one isomeric protein configuration to another after 10 ns during our 30 ns ground-state simulation. For one isomer, the surface hydration energy dominates the slow component of the total relaxation energy. For the other isomer, the slow component is dominated by protein interactions with the chromophore. In both cases, coupled water-protein motion is shown to be necessary for observation of the slow dynamics. Such biologically important water-protein motions occur on tens of picoseconds. One significant discrepancy exists between theory and experiment, the large inertial relaxation predicted by simulations but clearly absent in experiment. Further improvements required in the theoretical model are discussed.  相似文献   

20.
Two Monte Carlo algorithms for the adiabatic sampling of nuclear and electronic degrees of freedom are introduced. In these algorithms the electronic degrees of freedom are subject to a secondary low-temperature thermostat in close analogy to the extended Lagrangian formalism used in molecular dynamics simulations. Numerical tests are carried out for two model systems of coupled harmonic oscillators, and for two more realistic systems: the water dimer and bulk liquid water. A statistical-mechanical discussion of the partition function for systems with adiabatic separation of electronic and nuclear degrees of freedom, but with finite electronic temperature, is presented. The theoretical analysis shows that the algorithms satisfy the adiabatic limit using suitable choices of the electronic temperature, T elec, the number of electronic moves, R elec, and the maximum step sizes used for displacements of nuclear coordinates. For quadratic coupling of the nuclear and electronic degrees of freedom, the electronic phase-space volume is independent of the nuclear coordinates. In this case, the sampling of the nuclear coordinate phase-space recovers the correct Born-Oppenheimer limit independent of T elec, but each electronic degree of freedom contributes an offset of 0.5k B Telec (with T elec ′−1=T −1+T elec −1) to the average total energy. For nonquadratic coupling, satisfactory sampling of the nuclear coordinate phase-space requires a low T elec to limit the ratio of the electronic phase-space volumes at T elec and Telec to be close to unity. Received: 22 December 1998 / Accepted: 5 January 1999 / Published online: 21 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号