首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibration absorbers are usually designed using the finite element (FE) model of structures. It is generally believed that the modal models are more accurate than FE models, because in modal testing the model is built by direct measurement of the test structure. In this paper, a method is proposed to design a translational vibration absorber using the measured frequency response functions of a primary structure. The designed vibration absorber imposes a node on the structure when it is excited by a harmonic force. The method is based on the structural modification using experimental frequency response functions technique and determines the required receptance of the absorber at the excitation frequency. Moreover, a procedure is developed to suppress the vibration amplitude of two arbitrary points on a linear structure subjected to harmonic excitations by attaching two sprung mass absorbers. A cantilever beam is considered for the numerical case study, and the sprung masses are designed to suppress the vibration amplitude of the beam at the selected arbitrary points. A U-shape plate was considered for the experimental validation of the method for imposing a node using one absorber. Also, a beam was tested to demonstrate the effectiveness of method for imposing two nodes on the structures. The experimental results show that the designed absorbers can considerably suppress the vibration amplitude at the selected points on the structure.  相似文献   

2.
Nonlinear dynamics of elastic structures with two-mode interactions have been extensively studied in the literature. In this work, nonlinear forced response of elastic structures with essential inertial nonlinearities undergoing three-mode interactions is studied. More specifically, a three-beam structural system with attached mass is considered, and its multidegree-of-freedom discretized model for the structure undergoing planar motions is carefully studied. Linear modal characteristics of the structure with uniform beams depend on the length ratios of the three beams, the mass of the particle relative to that of the structure, and the location of the mass particle along the beams. The discretized model is studied for both external and parametric resonances for parameter combinations resulting in three-mode interactions. For the external excitation case, focus is on the system with 1:2:3 internal resonances with the external excitation frequency near the middle natural frequency. For the case of the structure with 1:2:5 internal resonances, the problem involving simultaneous principal parametric resonance of the middle mode and a combination resonance between the lowest and the highest modal frequencies is investigated. This case requires a higher-order approximation in the method of multiple time scales. For both cases, equilibrium and bifurcating solutions of the slow-flow equations are studied in detail. Many pitchfork, saddle-node, and Hopf bifurcations appear in the amplitude response of the three-beam structure, thus resulting in complex multimode responses in different parameter regions.  相似文献   

3.
The nonlinear response characteristics for a dynamic system with a geometric nonlinearity is examined using a multibody dynamics method. The planar system is an initially straight clamped-clamped beam subject to high frequency excitation in the vicinity of its third natural mode. The model includes a pre-applied static axial load, linear bending stiffness and a cubic in-plane stretching force. Constrained flexibility is applied to a multibody method that lumps the beam into N elements for three substructures subjected to the nonlinear partial differential equation of motion and N-1 linear modal constraints. This procedure is verified by d'Alembert's principle and leads to a discrete form of Galerkin's method. A finite difference scheme models the elastic forces. The beam is tuned by the axial force to obtain fourth order internal resonance that demonstrates bimodal and trimodal responses in agreement with low and moderate excitation test results. The continuous Galerkin method is shown to generate results conflicting with the test and multibody method. A new checking function based on Gauss' principle of least constraint is applied to the beam to minimize modal constraint error.  相似文献   

4.
The nonlinear coupled vibrations of an elastic structure and liquidsloshing in a rectangular tank partially filled with liquid, are investigated.The structure on which the liquid tank is attached is vertically subjected to a sinusoidal excitation when the natural frequency of the structure is equal to twicethe natural frequency of one of the sloshing modes. In the theoretical analysis, the modal equations are derivedby taking nonlinear fluid force into account. Responses of the structure and the liquid surface are presented asresonance curves using the harmonic balance method. From this theoreticalanalysis the following predictions are obtained: (a) due to the nonlinearity of the fluid force, harmonic oscillations appear in the structure, while subharmonic oscillations occur on the liquid surface; (b) the shapes of the resonance curves markedly change depending on the liquid level; and (c) when the tuning condition is slightly deviated, amplitudemodulated motions and chaotic oscillations appear during a certain range of the excitation frequency. These were qualitatively in agreement with the experimental results.  相似文献   

5.
分布阻尼振子可拓宽结构减振频带,因此可将振子分布于板中以形成复合板(简称“分布振子复合板”),进而实现较宽的减振频带.对于多点支撑处受到宽频非一致激励(例如在不同激励点处的激励频率、幅值与相位有差异)的分布振子复合板,目前还缺乏有效简便的优化控制指标.在作者之前的研究中,针对含分布振子的梁推导了基于模态应变能的模态阻尼计算理论,讨论了模态阻尼与单点激励下梁的减振效果的相关性,并应用于宽频减振设计优化.本文进一步将模态阻尼计算理论推广到分布振子复合板,并将研究从梁的单点激励扩展到板的多点非一致激励下的阻尼减振相关性.首先,在利用模态应变能法推导得到分布振子复合板的模态阻尼计算公式后,从理论上讨论了不同边界条件与模态阶次对计算结果的影响,以及计算理论的适用性.而后,进一步通过有限元参数分析了边界条件、频率比、模态阶次与质量比的影响.最后,通过算例分析了无振子板或分布振子复合板在四个激励点具有多种幅值与相位组合情况下的稳态响应.结果表明,推导的模态阻尼计算公式可正确预测不同边界条件下的模态阻尼,且理论预测的模态阻尼与基板的稳态平均加速度减小率、稳态峰值应变能减小率均有较高的相关性.  相似文献   

6.
The dynamic stability of a coupled two-degrees-of-freedom system subjected to parametric excitation by a harmonic action superimposed by an ergodic stochastic process is investigated. For the stability analysis, the method of moment functions is used. Explicit expressions for the stability of the second moments are obtained when the frequency of the harmonic excitation lies in the vicinity of the combination sum of the natural frequencies. Good agreement between the analytical and numerical results is obtained. As an application, the example of the flexural-torsional instability of a thin elastic beam under dynamic loading is considered  相似文献   

7.
A new method based on a modified line-spring model is developed forevaluating the natural frequencies of vibration of a cracked beam.This model inconjunction with the Euler-Bernoulli beam theory,modal analysis and linear elasticfracture mechanics is applied to obtain an approximate characteristic equation of acracked hinged-hinged beam.By solving this equation the natural frequencies aredetermined for different crack lengths in different positions.The results show goodagreement with the solutions through finite element analysis.The present method maybe extended to analyze other cracked complicated structures with various boundaryconditions.  相似文献   

8.
An active modal-fuzzy control method using hydraulic actuators is presented for seismic response reduction. In the proposed control system, a new fuzzy controller designed in the modal space produces the desired active control force. This type controller has all advantages of the fuzzy control algorithm and modal approach. Since it is very difficult to select input variables used in fuzzy controller among numerous state variables in the active fuzzy control system, the presented algorithm adopts the modal control algorithm to be able to consider information of all state variables in civil structures that are usually dominated by first few modes. In other words, all information of the whole structure can be considered in the control algorithm evaluated to reduce seismic responses and it can be efficient for civil structures especially. In addition, the presented algorithm is expected to magnify utility and performance caused by efficiency that the fuzzy algorithm can handle complex model more easily. An active modal-fuzzy control scheme is applied together with a Kalman filter and a low-pass filter to be applicable to real civil structures. A Kalman filter is considered to estimate modal states and a low-pass filter was used to eliminate spillover problem. The results of the numerical simulations for a wide amplitude range of loading conditions and for historic earthquake show that the proposed active modal-fuzzy control system can be beneficial in reducing seismic responses of civil structures.  相似文献   

9.
刘星光  唐有绮  周远 《力学学报》2020,52(2):522-532
轴向运动结构的横向振动一直是动力学领域的研究热点之一.目前大多数的文献只涉及对一种模型的研究,而针对几种模型的对比分析较少.本文对3种典型轴向运动结构(Euler梁、窄板和对边简支对边自由的板)的振动特性进行了对比分析.针对工程中不同的结构参数,本文为其理论研究中选择更加合理的模型提供了参考.通过复模态方法求解了3种模型的控制方程,给出了其相应的固有频率及模态函数.对于板模型,同时考虑了其自由边界的两种刚体位移以及弯扭耦合振动3种情况.通过数值算例给出了3种模型的前四阶固有频率随轴速和长宽比的变化情况,并应用微分求积法对复模态方法得到的解析解进行验证.特别采用三维图的形式分析了不同的轴速、阻尼、刚度和长宽比等参数混合时对3种模型第一阶固有频率的影响,着重研究了窄板和梁的不同的长宽比和轴速混合时对两者的第一阶固有频率的相对误差的影响.结果表明:随着轴速的增大,3种模型的固有频率逐渐减小.窄板是板的一种简化模型.在各参数值发生变化时,阻尼对第一阶固有频率的影响最小.长宽比很大,轴速很小或为零时,复杂模型可以简化为简单模型.  相似文献   

10.
An adaptive fuzzy sliding mode control (AFSMC) scheme is applied to actively suppress the two-dimensional vortex-induced vibrations (VIV) of an elastically mounted circular cylinder, free to move in in-line and cross-flow directions. Laminar flow regime at Re=90, low non-dimensional mass with equal natural frequencies in both directions, and zero structural damping coefficients, are considered. The natural oscillator frequency is matched with the vortex shedding frequency of a stationary cylinder at Re=100. The strongly coupled unsteady fluid/cylinder interactions are captured by implementing the moving mesh technology through integration of an in-house developed User Define Function (UDF) into the main code of the commercial CFD solver Fluent. The AFSMC approach comprises of a fuzzy system designed to mimic an ideal sliding-mode controller, and a robust controller intended to compensate for the difference between the fuzzy controller and the ideal one. The fuzzy system parameters as well as the uncertainty bound of the robust controller are adaptively tuned online. A collaborative simulation scheme is realized by coupling the control model implemented in Matlab/Simulink to the plant model constructed in Fluent, aiming at determination of the transverse control force required for complete suppression of the cylinder streamwise and cross-flow oscillations. The simulation results demonstrate the high performance and effectiveness of the adopted control algorithm in attenuating the 2D-VIV of the elastic cylinder over a certain flow velocity range. Also, the enhanced transient performance of the AFSM control strategy in comparison with a conventional PID control law is demonstrated. Furthermore, the effect of control action on the time evolution of vortex shedding from the cylinder is discussed. In particular, it is observed that the coalesced vortices in the far wake region of the uncontrolled cylinder, featuring the C(2S)-type vortex shedding characteristic mode, are ultimately forced to switch to the classical von Kármán vortex street of 2S-type mode, displaying wake vortices of moderately weaker strengths very similar to those of the stationary cylinder. Lastly, robustness of AFSMC is verified against relatively large structural uncertainties as well as with respect to a moderate deviation in the uniform inlet flow velocity.  相似文献   

11.
Experimental modal analysis techniques have been shown to be applicable to both laboratory test specimens and in situ test structures made of reinforced concrete. These techniques, in general, apply only to linear structures; however, many concrete structures are designed to remain in the linear, uncracked response region during dynamic excitation (nuclear power plant structures, for example). Data from the experimental analyses agreed well with finite-element modal analysis results, and the numerical models were further refined based on the experimental results. Because of the relatively low excitation levels required, these methods provide engineers with techniques for assessing the as-built condition of a structure without introducing damage into the structure. If a concrete structure is damaged, the experimental modal analysis methods could possibly be used to monitor its deterioration.
Further investigations are needed to evaluate the sensitivity to damage of the experimentally determined modal properties. Also, methods must be found to determine, without prior modal data, if an in-situ structure is in a damaged state. These topics are being pursued by other researchers in the experimental modal analysis field.6
In its current form, experimental modal analysis methods can provide both practicing and research engineers with a valuable tool for verifying dynamic properties of reinforced concrete structures.  相似文献   

12.
两端弹性支承输流管道固有特性研究   总被引:2,自引:1,他引:1  
颜雄  魏莎  毛晓晔  丁虎  陈立群 《力学学报》2022,54(5):1341-1352
输流管道广泛应用于航天航空、石油化工、海洋等重要的工程领域, 其振动特性尤其是系统固有特性一直是国内外学者研究的热点问题. 本文研究了两端弹性支承输流管道横向振动的固有特性, 尤其是在非对称弹性支承下的系统固有特性. 使用哈密顿原理得到了输流管道的控制方程及边界条件, 通过复模态法得到了静态管道的模态函数, 以其作为伽辽金法的势函数和权函数对线性派生系统控制方程进行截断处理. 分析了两端对称支承刚度、两端非对称支承刚度、管道长度以及流体质量比对系统固有频率的影响规律, 重点讨论了管道两端可能形成的非对称支承条件下固有频率的变化规律. 结果表明, 较大的对称支承刚度下管道的第一阶固有频率下降较快; 当管道两端支承刚度变化时, 管道的各阶固有频率在两端支承刚度相等时取得最值; 对于两端非对称支承的管道而言, 两端支承刚度越接近, 第一阶固有频率下降的越快, 而且相应的临界流速越小; 流体的流速越大, 其对两端非对称弹簧支承的管道固有频率的影响更为明显.   相似文献   

13.
Experimental studies have been conducted to clarify the influence of horizontal harmonic excitations on the dynamic stability of a slender cantilever beam under vertical harmonic excitation. Three kinds of aluminum test beams with rectangular cross section have been used. The test beam being clamped at one end and free at the other end, was vertically stood, and was harmonically excited to both vertical and horizontal directions simultaneously. The direction of the horizontal excitation was taken parallel to one of the beam side faces, i.e. two directions were considered as X and Y directions which have the largest and smallest flexural rigidity, respectively. By varying the horizontal excitation amplitude, keeping the amplitude of excitation in the vertical direction, the influence of the horizontal excitation has been investigated on the principal instability regions in which unstable vibration of the fundamental vibration mode occurs. The excitation frequency in the vertical excitation was taken around twice the fundamental natural frequency 2f Y 1 in smallest rigidity direction, while that in the horizontal direction was taken around both the fundamental natural frequency f Y 1 and twice of it 2f Y 1. Obtained experimental results present useful fundamental data for aseismatic design of structures under earthquake containing both vertical and horizontal excitation components.  相似文献   

14.
The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded or significantly suppressed for a range of external excitation frequencies. Maximization of the band-gap is therefore an obvious objective for optimum design. This problem is sometimes formulated by optimizing a parameterized design model which assumes multiple periodicity in the design. However, it is shown in the present paper that such an a priori assumption is not necessary since, in general, just the maximization of the gap between two consecutive natural frequencies leads to significant design periodicity.The aim of this paper is to maximize frequency gaps by shape optimization of transversely vibrating Bernoulli–Euler beams subjected to free, standing wave vibration or forced, time-harmonic wave propagation, and to study the associated creation of periodicity of the optimized beam designs. The beams are assumed to have variable cross-sectional area, given total volume and length, and to be made of a single, linearly elastic material without damping. Numerical results are presented for different combinations of classical boundary conditions, prescribed orders of the upper and lower natural frequencies of maximized natural frequency gaps, and a given minimum constraint value for the beam cross-sectional area.To study the band-gap for travelling waves, a repeated inner segment of the optimized beams is analyzed using Floquet theory and the waveguide finite element (WFE) method. Finally, the frequency response is computed for the optimized beams when these are subjected to an external time-harmonic loading with different excitation frequencies, in order to investigate the attenuation levels in prescribed frequency band-gaps. The results demonstrate that there is almost perfect correlation between the band-gap size/location of the emerging band structure and the size/location of the corresponding natural frequency gap in the finite structure.  相似文献   

15.
本文基于一种新型的高阶梁理论,研究了功能梯度材料梁的自由振动问题。首先对该新型高阶梁理论进行了介绍,然后对该理论进行了有限元实现,并利用Hamilton原理推导得到了离散的动力学平衡方程,构造了2节点8自由度的C1型高阶梁单元。参照文献作了均质悬臂梁的模态分析,验证了该梁单元的精度。然后利用该单元进行功能梯度梁的模态分析,并构造了一种材料相关性很弱的无量纲固有频率。由该无量纲固有频率引入了功能梯度梁与均质梁固有频率之间的转换关系,并通过算例分析了该转换关系的适用条件。  相似文献   

16.
This paper deals with the transient motions experienced by an elastic circular cylinder in a cylindrical fluid domain initially at rest and subjected to small-amplitude imposed displacements. Three fluid models are considered, namely potential, viscous and acoustic, to cover different fluid–structure interaction regimes. They are derived here from the general compressible Navier–Stokes equations by a formal perturbation method so as to underline their links and ranges of validity a priori. The resulting fluid models are linear owing to the small-amplitude-displacement hypothesis. For simplicity, the elastic flexure beam model is chosen for the circular cylinder dynamics. The semi-analytical approach used here is based on the methods of Laplace transform in time, in vacuo eigenvector expansion with time-dependent coefficients for the transverse beam displacement and separation of variables for the fluid. Moreover, the viscous case is handled with a matched asymptotic expansion performed at first order. The projection of the fluid forces on the in vacuo eigenvectors leads to a fully coupled system involving the modal time-dependent displacement coefficients. These coefficients are then obtained by matrix inversion in the Laplace domain and fast numerical inversion of the Laplace transform. The three models, written in the form of convolution products, are described through the analysis of their kernels, involving both the wave propagation phenomena in the fluid domain and the beam elasticity. Last, the three models are illustrated for a specific imposed motion mimicking shock loading. It is shown that their combination permits coverage of a broad range of motions.  相似文献   

17.
弹性波在色散关系经过设计的梯度结构中传播时会产生空间分频现象和波场能量增强现象,即不同频率的弹性波会在结构的不同位置停止向前传播并发生能量聚集,这就是弹性波彩虹捕获效应.其相关研究成果可以促进结构健康监测、振动控制以及能量俘获等领域的发展.本文通过所设计的梯度结构梁,系统地研究了弯曲波彩虹捕获效应及其在压电能量俘获中的应用.首先,利用传递矩阵法获得了梯度结构梁元胞能带结构的解析解,进而分析了弯曲波彩虹捕获效应的产生机理:不同频率的弯曲波会在不同元胞附近群速度减小到零,从而停止向前传播并发生反射;入射波和反射波的叠加,以及群速度减小带来的能量聚集,会显著增强反射处的波场能量.其次,通过有限元仿真和实验验证了弯曲波彩虹捕获效应的空间分频现象和波场能量增强现象.最后,通过有限元多物理场耦合仿真和实验,研究了粘贴PVDF压电薄膜的梯度结构梁相对于均匀梁的弯曲波能量俘获效果及其随入射波频率的变化规律.结果表明,在弯曲波彩虹捕获效应发生频带内,粘贴在梯度结构梁上的PVDF压电薄膜的输出电压约为粘贴在均匀梁相应位置处的PVDF压电薄膜的输出电压的2倍.  相似文献   

18.
This paper studies the wave based active vibration control of a membrane antenna structure. The membrane antenna structure studied in this paper has a great prospect in aerospace engineering. First, the dynamic model of the membrane antenna structure is established based on the finite element method. Then, based on the hypothesis of modal excitation mechanism, a wave-based controller is designed using the wave attenuation method. This method does not depend on the wave transfer function of the structure, so it can be applied to structures with complex shapes and boundaries. At last, the validity of the presented controller is verified through numerical simulations. Simulation results indicate that the dynamic behavior of the membrane antenna structure shows obvious wave characteristics; the presented controller can suppress the vibration of the structure effectively through holding back the formation of standing waves, and better control effect can be obtained when the actuators are placed near to the excitation point.  相似文献   

19.
This paper describes a novel nondestructive damage detection method that was developed to study the influence of a crack on the dynamic properties of a cantilever beam subjected to bending. Experimental measurements of transfer functions for the cracked cantilever beam revealed a change in the natural frequency with increasing crack length. A finite element model of a cracked element was created to compute the influence of severity and location of damage on the structural stiffness. The proposed model is based on the response of the cracked beam element under a static load. The change in beam deflection as a result of the crack is used to calculate the reduction in the global component stiffness. The reduction of the beam stiffness is then used to determine its dynamic response employing a modal analysis computational model. Euler–Bernoulli and Timoshenko beam theories are used to quantify the elastic stiffness matrix of a finite element. The transfer functions from both theories compare well with the experimental results. The experimental and computational natural frequencies decreased with increasing crack length. Furthermore the Euler–Bernoulli and Timoshenko beam theories resulted in approximately the same decrease in the natural frequency with increasing crack length as experimentally measured.  相似文献   

20.
赵雨皓  杜敬涛  陈依林  刘杨 《力学学报》2022,54(9):2529-2542
弹性梁结构作为一种基本单元被广泛于建筑、航空、航天、船舶等工程领域. 为有效降低弹性梁结构的振动水平, 深刻理解其振动特性、动力学行为显得尤为重要. 本文建立了具有非线性支撑和弹性边界约束的轴向载荷梁结构动力学分析模型, 并采用伽辽金截断法预报梁结构的动力学响应. 在伽辽金截断法的求解过程中, 选取具有弹性边界约束的轴向载荷梁结构的模态振型函数作为伽辽金截断法的试函数与权函数. 首先, 研究截断数对伽辽金截断法稳定性的影响, 并采用谐波平衡法研究伽辽金截断法的可靠性. 在此基础上, 研究谐波激励扫频方向、非线性支撑参数对具有非线性支撑和弹性边界约束的轴向载荷梁结构动力学响应的影响规律. 研究结果表明, 具有非线性支撑和弹性边界约束的轴向载荷梁结构的动力学响应具有初值敏感性且非线性支撑参数对梁结构动力学响应的影响显著. 相关非线性支撑参数使得梁结构出现复杂动力学行为. 合适的非线性支撑参数能够抑制具有非线性支撑和弹性边界约束的轴向载荷梁结构的复杂动力学行为并对梁结构边界处的减振具有有益效果.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号