首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of CuII–Br–FeIII-type heterobimetallic complexes was observed spectrophotometrically, given the non-additivity of the spectra from the copper(II) and iron(III) complexes. The kinetics of the oxidation of promazine radical (ptz+•) to promazine 5-oxide, by iron(III) bromides, copper(II) bromides, and a mixture of these complexes in acidic aqueous solutions, have been studied using UV–Vis spectroscopy at I = 1.0 M (H+, Cu2+, Fe3+, Br) and T = 318 K. Copper(II) inhibits the oxidation of the promazine radical to promazine sulfoxide using iron(III) complexes. A rate retardation effect, characterized by the dependence of the pseudo second-order rate constant (k II) on the copper(II) concentration k II = a/(1 + b[CuII]), can be rationalized as a result of CuII–Br–FeIII-type heterobimetallic complex formation.  相似文献   

2.
The oxidation of [CoII(nta)(ox)(H2O)2]3− and [CoII(nta)(ph)(H2O)2]3− (nta = nitrilotriacetate, ox = oxalic acid and ph = phthalic acid) by periodate have been studied kinetically in aqueous solution over 20–40 °C and a variety of pH ranges. The rate of oxidation of [CoII(nta)(ox)(H2O)2]3− by periodate, obeys the following equation: d[CoIII]/dt = [CoII(nta)(ox)(H2O)23−][H5IO6] {k 4 K 5 + (k 5 K 6 K 2/[H+]} while the reaction of [CoII(nta)(ph)(H2O)2]3− with periodate in aqueous acidic medium obeys the following rate law: d[CoIII]/dt = k 6 K 8[CoII]T [IVII]T/{1 + [H+]/K 7 + K 8[IVII] T }. Initial cobalt(III) products were formed and slowly converted to final products, fitting an inner-sphere mechanism. Thermodynamic activation parameters have been calculated. A common mechanism for the oxidation of ternary nitrilotriacetatocobalt(II) complexes by periodate is proposed and supported by an excellent isokinetic relationship between ΔH* and ΔS* values for these reactions.  相似文献   

3.
The kinetics of the oxidation of the 2-aminomethylpyridineCoII complex by N-bromosuccinimide (NBS), have been studied in aqueous solutions under various conditions, and obey the following rate law:Rate = [NBS][Co(L)(H2O)2]2+[k2+k3/[H+]]An inner-sphere mechanism is proposed for the oxidation pathway for both protonated and deprotonated complex species, with the formation of an intermediate, which is slowly converted into the final oxidation products. The reaction rate is increased by increasing the pH, T, [complex], and decreased by increasing ionic strength over the range studied.  相似文献   

4.
Chromium(III)-lutidinato complexes of general formula [Cr(lutH) n (H2O)6−2n ]3−n (where lutH is N,O-bonded lutidinic acid anion) were obtained and characterized in solution. Acid-catalysed aquation of [Cr(lutH)3]0 leads to only one ligand dissociation, whereas base hydrolysis produces chromates(III) as a result of subsequent ligand liberation steps. The kinetics of the first ligand dissociation were studied spectrophotometrically, within the 0.1–1.0 M HClO4 and 0.4–1.0 M NaOH range. In acidic media, two reaction stages, the chelate-ring opening and the ligand dissociation, were characterized. The dependencies of pseudo-first-order rate constants on [H+] are as follows: k obs1 = k 1 + k −1/K 1[H+] and k obs2 = k 2 K 2[H+]/(1 + K 2[H+]), where k 1 and k 2 are the rate constants for the chelate-ring opening and the ligand dissociation, respectively, k −1 is the rate constant for the chelate-ring closure, and K 1 and K 2 are the protonation constants of the pyridine nitrogen atom and coordinated 2-carboxylate group in the one-end bonded intermediate, respectively. In alkaline media, the rate constant for the first ligand dissociation depends on [OH]: k obs1 = k OH(1) + k O[OH], where k OH(1) and k O are rate constants of the first ligand liberation from the hydroxo- and oxo-forms of the intermediate, respectively, and K 2 is an equilibrium constant between these two protolytic forms. Kinetic parameters were determined and a mechanism for the first ligand dissociation is proposed. The kinetics of the ligand liberation from [Cr(lut)(OH)4]3− were also studied and the values of the pseudo-first-order rate constants are [OH] independent.  相似文献   

5.
Oxidation of α-diols, namely ethylene glycol, 1,2-propanediol, and 1,2-butanediol, by [Ag(HIO6)2]5− is kinetically first-order with respect to the Ag(III) complex. The dependence of observed first-order rate constants k obs on [α-diol] can generally be expressed by: k obs = k x[α-diol] + k y[α-diol]2. Our experimental results demonstrate that the different rate laws derived in the oxidation reactions of ethylene glycol (J. H. Shan et al. Chin. J. Chem. 24:478, 2006) and 1,2-butanediol (J. H. Shan et al. Transition Met. Chem. 30:651, 2005) by the Ag(III) complex are probably not correct. In turn, the reaction mechanisms based on these rate laws should probably be treated with caution.  相似文献   

6.
The equilibria and kinetics of the reaction of FeIII with salicylaldehyde ando-hydroxyacetophenone, leading to 1∶1 chelate formation, have been studied at different temperatures (25–35°C) and ionic strength, I = 1.0 mol dm−3 (NaClO4+HClO4). A dual path mechanism involving both Fe aq 3+ and Fe(OH) aq 2+ species and undissociated free ligand (LH) is consistent with the experimental observations where [H+]≫[Fe]T≫[L]T (where [Fe]T and [L]T stand for total concentrations of iron and ligand respectively). The results conform to kobs/B = k1[H+]+k2Kh where B = [Fe]T/(Kh+[H+])+1/Q; Kh = hydrolysis constant of Fe aq 3+ ; k1, k2 are the forward second order rate constants of Fe aq 3+ and Fe(OH) aq 2+ , respectively, and Q is the equilibrium constant of the reaction, Fe3++LH⇋FeL2++H+. Thermodynamic parameters for each of the steps have been determined. Fe(OH) aq 2+ appears to react in a dissociative fashion (Eigen-Tamm mechanism), whilst Fe aq 3+ appears to react through the associative inter-change (Ia) mechanism. The equilibrium constants (Q) obtained spectrophotometrically are compared with those obtained from kinetic studies. TMC 2638  相似文献   

7.
Acid- and base-catalyzed hydrolysis of [Cr(ampy)(ox)2], where ampy = 2-(aminomethyl)pyridine, leads to successive dissociation of the ligands via concurrent reaction paths, whereas at pH 1–9 only ampy is liberated as a result of spontaneous processes. The first ligand dissociation proceeds via aqua intermediates with one-end bonded ampy (1) or ox ligands (2), respectively, which in alkaline media undergo rapid deprotonation to give the appropriate hydroxo-forms. The kinetics of two reaction stages, namely the chelate ring opening and the ligand liberation, were studied spectrophotometrically. In acidic media, the first stage is much faster than the second, whereas in alkaline solutions, both the stages are characterized by similar rate constants. The dependences of k obs on [H+] are as follows: k obs1,H = a 1 + b 1/[H+], k obs2,H = a 2 + b 2[H+]. At pH > 13, rate constants k obs1,OH and k obs2,OH are [OH] independent. The effect of pH on the complex reactivity was rationalized based on proposed mechanisms.  相似文献   

8.
Oxidation of N-methylethylamine by bis(hydrogenperiodato)argentate(III) ([Ag(HIO6)2]5−) in alkaline medium results in demethylation, giving rise to formaldehyde and ethylamine as the oxidation products. The oxidation kinetics has been followed spectrophotometrically in the temperature range of 20.0–35.0 °C, and shows an overall second-order character: being first-order with respect to both Ag(III) and N-methylethylamine. The observed second-order rate constants k′ increase with increasing [OH] of the reaction medium, but decrease with increasing the total concentration of periodate. An empirical rate expression for k′ has been derived as: k′ = (k a + k b[OH])K 1/{f([OH])[IO4 ]tot + K 1}, where k a and k b are rate parameters, and K 1 is an equilibrium constant. These parameters have been evaluated at all the temperatures studied, enabling calculation of activation parameters. A reaction mechanism is suggested to involve two pre-equilibria, leading to formation of an intermediate Ag(III) complex, namely [Ag(HIO6)(OH)(MeNHEt)]2−. In the subsequent rate-determining steps, this intermediate undergoes inner-sphere electron transfer from the coordinated amine to the metal center via two distinct routes, one of which is spontaneous while the other is mediated by a hydroxide ion.  相似文献   

9.
The oxidation of N,N-dimethylhydroxylamine (DMHAN) by nitrous acid is investigated in perchloric acid and nitric acid medium, respectively. The effects of H+, DMHAN, ionic strength and temperature on the reaction are studied. The rate equation in perchloric acid medium has been determined to be −d[HNO2]/dt = k[DMHAN][HNO2], where k = 12.8 ± 1.0 (mol/L)−1 min−1 when the temperature is 18.5 °C and the ionic strength is 0.73 mol/L with an activation energy about 41.5 kJ mol−1. The reaction becomes complicated when it is performed in nitric acid medium. When the molarity of HNO3 is higher than 1.0 mol/L, nitrous acid will be produced via the reaction between nitric acid and DMHAN. The reaction products are analyzed and the reaction mechanism is discussed in this paper.  相似文献   

10.
Two solid complexes, fac–[Cr(gly)3] and [Cr(gly)2(OH)]2, (where gly is glycinato ligand) were prepared and their acid-catalysed aquation products were identified. The structure of [Cr(gly)3] was solved by X-ray diffraction, revealing a cationic 3D sublattice with perchlorate anions inside its cavities. Acid-catalysed aquation of [Cr(gly)3] and [Cr(gly)2(OH)]2 leads to the same inert product, [Cr(gly)2(H2O)2]+, in a two-stages process. At the first stage, intermediate complexes, [Cr(gly)2(O–glyH)(H2O)]+ and [Cr(gly)2(H2O)–OH–Cr(gly)2(H2O)]+, are formed respectively. Kinetics of the first aquation stage of [Cr(gly)3] were studied in HClO4 solutions. The dependencies of the pseudo first-order rate constants on [H+] are as follows: k obs1H = k 0 + k 1 K p1[H+], where k 0 and k 1 are rate constants for the chelate-ring opening via spontaneous and acid-catalysed reaction paths, respectively, and K p1 is the protonation constant. The proposed mechanism assumes formation of the reactive intermediate as a result of proton addition to the coordinated carboxylate group of the didentate ligand. Some kinetic studies on the second reaction stage, the one-end bonded glycine liberation, were also done. The obtained results were analogous to those for stage I. In this case, the proposed reactive species are intermediates, protonated at the carboxylate group of the monodentate glycine. Base hydrolysis of two complexes, [Cr(gly)2(O–gly)(OH)] and [Cr(gly)2(OH)2], was studied in 0.2–1.0 M NaOH. The pseudo first-order rate constants, k obsOH, were [OH] independent in the case of [Cr(gly)2(O–gly)(OH)], whereas those for [Cr(gly)2(OH)2] linearly depended on [OH]. The reaction mechanisms were proposed, where the OH -catalysed reaction path was rationalized in terms of formation of the reactive conjugate base, [Cr(gly)2(OH)(O)]2−, as a result of OH ligand deprotonation. Activation parameters were determined and discussed.  相似文献   

11.
The electrocatalytic activity of a Prussian blue (PB) film on the aluminum electrode by taking advantage of the metallic palladium characteristic as an electron-transfer bridge (PB/Pd–Al) for electrooxidation of 2-methyl-3-hydroxy-4,5-bis (hydroxyl–methyl) pyridine (pyridoxine) is described. The catalytic activity of PB was explored in terms of FeIII [FeIII (CN)6]/FeIII [FeII (CN)6]1− system. The best mediated oxidation of pyridoxine (PN) on the PB/Pd–Al-modified electrode was achieved in 0.5 M KNO3 + 0.2 M potassium acetate of pH 6 at scan rate of 20 mV s−1. The mechanism and kinetics of the catalytic oxidation reaction of PN were monitored by cyclic voltammetry and chronoamperometry. The results were explained using the theory of electrocatalytic reactions at chemically modified electrodes. The charge transfer-rate limiting reaction step is found to be a one-electron abstraction, whereas a two-electron charge transfer reaction is the overall oxidation reaction of PN by forming pyridoxal. The value of α, k, and D are 0.5, 1.2 × 102 M−1 s−1, and 1.4 × 10−5 cm2 s−1, respectively. Further examination of the modified electrodes shows that the modifying layers (PB) on the Pd–Al substrate have reproducible behavior and a high level of stability after posing it in the electrolyte or Pyridoxine solutions for a long time.  相似文献   

12.
Peroxydisulfate (PDS) oxidizes N,N′-ethylenebis(isonitrosoacetyleacetoneimine)copper(II) complex, CuIIL, to the corresponding copper(III) complex, [CuIIIL]+. The kinetic runs were performed in the presence of EDTA to scavenge any trace metal impurities. The kinetics of the reaction at constant pH, ionic strength, and temperature obeys the rate law d[CuIIIL]/dt = 2k 2[CuIIL][S2O8 2−] with k 2 having a value of (8.85 ± 0.32) × 10−2 M−1 s−1 at μ = 0.30 M and T = 25.0 °C. The rate constant k 2 is not affected by variation of pH over the range 3.60–5.20. The second order rate constant is also unaffected by changing ionic strength. The values of k obs were determined over the temperature 25.0–40.0 °C range. The enthalpy of activation, ∆H*, and entropy of activation, ∆S*, have been calculated as 34.9 ± 0.5 kJ mol−1 and −173.3 ± 11.4 J K−1 mol−1, respectively. The kinetics of this reaction, as far as we know, is the first evidence that copper(III) is the likely reactive species in copper catalyzed PDS oxidation reactions.  相似文献   

13.
The oxidation of N,N-dimethylethanolamine (DMEA) by bis(hydrogenperiodato) argentate(III) ([Ag(HIO6)2]5−) was studied in aqueous alkaline medium. Formaldehyde and dimethylamine were identified as the major oxidation products after the oxidation of DMEA. The oxidation kinetics was followed spectrophotometrically in the temperature range of 25.0 °C–40.0 °C. It was found that the reaction was first order in [Ag(III)]; the oberved first-order rate constants k obsd as functions of [DMEA], [OH] and total concentration of periodate ([IO4-]tot[\mathrm{IO}_{4}^{-}]_{\mathrm{tot}}) were analyzed and were revealed to follow a rate expression: kobsd = (k1 +k2[OH-])K1K2[DMEA]/{f([OH-])[IO4-]tot+ K1 + K1K2[DMEA]}k_{\mathrm{obsd}} = (k_{1} +k_{2}[\mathrm{OH}^{-}])K_{1}K_{2}[\mathrm{DMEA}]/\{f([\mathrm{OH}^{-}])[\mathrm{IO}_{4}^{-}]_{\mathrm{tot}}+ K_{1} + K_{1}K_{2}[\mathrm{DMEA}]\}. Rate constants k 1 and k 2 and equilibrium constant K 2 were derived; activation parameters corresponding to k 1 and k 2 were computed. In the proposed reaction mechanism, a peridato-Ag(III)-DMEA ternary complex is formed indirectly through a reactive intermediate species [Ag(HIO6)(OH)(H2O)]2−. In subsequent rate-determining steps as described by k 1 and k 2, the ternary complex decays to Ag(I) through two reaction pathways: one of which is spontaneous and the other is prompted by an OH.  相似文献   

14.
Three chromium(III) complexes of general formula [Cr(ox)2(pdaH)]2− (where ox = C2O4 2− and pdaH is N,O-bonded 2,3-, 2,4- or 2,5-pyridinedicarboxylic acid anion) were obtained and characterized in solution. Acid-catalysed aquation of [Cr(ox)2(pdaH)]2− gave two products: [Cr(ox)(pdaH)(H2O)2]0 (P1) and cis-[Cr(ox)2(H2O)2]2− (P2). The kinetics of these reactions were studied spectrophotometrically, within the 0.1–1.0 M HClO4 range, and the pseudo-first-order rate constants for the oxalato (k obs1) and pdaH (k obs2) ligands dissociation were calculated based on the determined pseudo-first-order rate constants (k obs) and P1:P2 molar ratio. The dependencies of the pseudo-first-order rate constants on [H+] are as follows: k obs1 = b 1[H+] and k obs2 = b 2[H+], where b 1 and b 2 are the second-order rate constants for the oxalato and pdaH ligands dissociation, respectively. Kinetic parameters were determined and the mechanism of the pdaH ligand dissociation is proposed.  相似文献   

15.
The electron-transfer kinetics of the ionic surfactant complex cis-chloro/bromo(cetylamine)bis(ethylenediamine)cobalt(III) by iron(II) in aqueous perchlorate medium at μ=1.0 mol⋅dm−3 ionic strength have been studied at 303, 308 and 313 K by spectrophotometry under pseudo-first-order conditions using an excess of the reductant. The effects of [H+], ionic strength and [Fe2+] on the rate were determined. The reaction was found to be second order and showed to be independence of the acid concentration in the range [H+]=0.05–0.25 mol⋅dm−3. The second order rate constant increased with surfactant–cobalt(III) concentration and the occurrence of aggregation of the complex itself altered the reaction rate. Activation and thermodynamic parameters have been computed. It is suggested that the reaction of Fe2+(aq) with the cobal (III) complex proceeds by an inner-sphere mechanism. The critical micelle concentration (CMC) values of these surfactant–metal complexes were obtained in aqueous solution from conductance measurements. Specific conductivity data (at 303, 308 and 313 K) served for the evaluation of the temperature-dependence of the critical micelle concentration (CMC) and the thermodynamics of micellization (ΔG moH mo and ΔS mo).  相似文献   

16.
Nitrous acid is a key redox controlling factor, affecting the speciation of neptunium in the reprocessing of used nuclear fuel by solvent extraction. The kinetics of the reduction of neptunium(VI) by nitrous acid in solutions of nitric acid was investigated spectrophotometrically by the method of initial rates. The reaction is of first order with respect to Np(VI) while the order with respect to HNO2 is 1.20 ± 0.04. The reaction rate is almost inversely proportional to the hydrogen ion concentration (reaction order −0.92 ± 0.06), indicating that the reaction proceeds primarily through the reaction of neptunium(VI) with the nitrate anion. The experimental value of the rate constant k for the rate law −d[Np(VI)]/dt = k·[Np(VI)]·[HNO2]1.2/[H+] is of (0.159 ± 0.014) M−0.2 s−1 in I = 4 M and at 20 °C. The activation energy is (−57.3 ± 1.6) kJ/mol, which is in agreement with previous data on this reaction in perchloric acid.  相似文献   

17.

Abstract  

Iron(III)–salen complexes catalyze the H2O2 oxidation of various ring-substituted anilines in MeCN have been studied, and [O=FeIV(salen)] is proposed as the active species. Study of the kinetics of the reaction by spectrophotometry shows the emergence of a new peak at 445 nm in the spectrum which corresponds to azobenzene. Further oxidation of azobenzene by H2O2 leads to the formation of azoxybenzene. ESI–MS studies also support the formation of these products. The rate constants for the oxidation of meta- and para-substituted anilines were determined from the rate of decay of oxidant as well as the rate of formation of azobenzene, and the reaction follows Michaelis–Menten kinetics. The rate data show a linear relationship with the Hammett σ constants and yield a ρ value of −1.1 to −2.4 for substituent variation in the anilines. A reaction mechanism involving electron transfer from aniline to [O=Fe(salen)] is proposed. The presence of axial ligands modulates the activity of the complex.  相似文献   

18.
Mannich reaction of 2-Amino propanol, 2-tert-butyl-4-methylphenol, and formaldehyde in the ratio of 1:2:2 provides a new compound, N-(1-propanol)-N,N-bis(3-tert-butyl-5-methyl-2-hydroxybenxyl)amine (H3L), which has been characterized by X-ray crystallography and elemental analysis. In the presence of Et3N, the reaction of H3L and FeCl3·6H2O gives a dinuclear Fe(III) complex [Fe2L2] 1, which has been characterized by X-ray crystallography, magnetic measurement, and cyclic voltammetry. The value of μeff at room temperature (5.97 μB) is much less than the expected spin-only value (8.37 μB) of two high spin (hs) Fe3+ (S = 5/2) ions [μ = g[∑ZS(S + 1)]1/2], indicating there are strong coupling interactions between Fe3+ ions. The magnetic behavior of 1 denotes the occurrence of intramolecular antiferromagnetic interactions (J = −13.35 cm−1 ). CV of 1 reveals two reversible waves at 0.433 and 1.227 V versus AgCl/Ag, which can be ascribed to the successive redox coupling of FeIIFeII/FeIIIFeII and FeIIIFeII/FeIIIFeIII, respectively.  相似文献   

19.
The oxidation kinetics of the 2-aminomethylpyridineCrIII complex with periodate in aqueous solution were studied and found to obey the rate law:Rate = [CrIII]T [IO4 -]{k1K2 + k2 K1 K3/[H+]}/{1+K1/[H+] + k2[IO4 -]+K1K3/[H+][IO4 -]} where K 1, K 2 and K 3 are the deprotonation of [Cr(L)2(H2O)]3+ and pre-equilibrium formation constants for [(L)2—Cr—OIO3]2+ and [(L)2—Cr—OH—OIO3]+ precursor complexes respectively. An inner-sphere mechanism was proposed. The effect of Cu2+ on the oxidation rate was studied over the (1.0–9.0) × 10−5 mol dm−3 range. The reaction rate was found to be inversely proportional to the Cu2+ concentration over the range studied. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Summary The kinetics of oxidation of [CoII(EDTA)]2- (EDTA = ethylenediaminetetraacetate) by N-bromosuccinimide (NBS) in aqueous solution obey the equation: Rate = k 2 K 3[CoII]T[NBS]/{1 + [H+]/K 2 + K 3[NBS]} where k 2 is the rate constant for the electron-transfer process, K 2 the equilibrium constant for the dissociation of [CoII(EDTAH)(H2O)] to [CoII(EDTA)(OH)]3– and K 3 the pre-equilibrium formation constant. The activation parameters are reported. It is proposed that electron transfer proceeds via an inner-sphere mechanism with the formation of an intermediate which slowly generates hexadentate[CoIII(EDTA)].Abstracted from the M.Sc. thesis of Eman S. H. Khaled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号