首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steady-state permeation rates for pure CO2 and CH4 and their binary mixtures through homogeneous dense cellulose triacetate membranes have been measured at three temperatures between 20 and 40°C and pressures up to 2.8 MPa. The pressure dependence of the mean permeability coefficient for CO2 can be described by the total immobilization model in conjunction with a modified free-volume model. No appreciable pressure dependence of the permeability coefficient for CH4 is observed, while the permeability coefficients for CH4 in binary mixture of CO2 and CH4 depend on applied gas pressure. The pressure dependences of the mean permeability coefficients for the components in the binary mixture are discussed in terms of the above mobility model. Membrane plasticization induced by CO2 affects permeation by both gases.  相似文献   

2.
The facilitated transport of penicillin G from aqueous solutions to the stripping phase through bulk liquid membrane (BLM) containing TBP in 3% iso-octanol and n-butyl acetate was studied. Na2CO3 solution was used as the stripping phase. Experiments were performed as a function of stirring rate, TBP concentration and type of diluent in the liquid membrane phase, pH, and initial penicillin G concentration in the feed phase, Na2CO3 concentration in the stripping phase, etc. The results showed that the BLM process could carry out the simultaneous separation and concentration of penicillin G from dilute aqueous solutions, and arise “up-hill” effect due to the characteristic of non-equilibrium mass transfer. The diffusion of penicillin G complex in the liquid membrane phase played an important role in BLM process. The mass transfer mechanism of BLM for this system was also discussed.  相似文献   

3.
The permeability of carbon dioxide (CO2) through imidazolium-based ionic liquid membranes was measured by a sweep gas method. Six species of ionic liquids were studied in this work as follows: [emim][BF4], [bmim][BF4], [bmim][PF6], [bmim][Tf2N], [bmim][OTf], and [bmim][dca]. The ionic liquids were supported with a polyvinylidene fluoride porous membrane. The measurements were performed at T = (303.15 to 343.15) K. The partial pressure difference between feed and permeate sides was 0.121 MPa. The permeability of the CO2 increases with temperature for the all ionic liquid species. Base on solution diffusion theory, it can be explained that the diffusion coefficient of CO2 in an ionic liquid affects the temperature dependence more strongly than the solubility coefficient. The greatest permeability was obtained with the [bmim][Tf2N] membrane. The membrane of [bmim][PF6] presents the lowest permeability.The separation coefficient between CO2 and N2 through the ionic liquid membranes was also investigated at the volume fraction of CO2 at feed side 0.10. The separation coefficient decreases with the increase of temperature for the all ionic liquid species. The membrane of [emim][BF4] and [bmim][BF4] gives the highest separation coefficient at constant temperature. The lowest separation coefficient was obtained from [bmim][Tf2N] membrane which presents the highest permeability of CO2.  相似文献   

4.
A membrane having an amine moiety was prepared by plasma-grafting 2-(N,N-dimethyl)aminoethyl methacrylate (DAMA) onto a microporous polyethylene substrate. Permselectivity of the membrane for CO2 over N2 was achieved in both dry and water swollen conditions. When the CO2 partial pressure in the feed gas was 0.047 atm, the selectivity of CO2 over N2 reached 130 for the highly swollen water containing membrane. This value was found to agree with that obtained with a mobile carrier membrane (supported liquid membrane) using DAMA as the carrier. The effects of several experimental conditions such as degree of grafting, feed partial pressure and temperature on the membrane performance were studied. It was suggested that the membrane acted as a fixed carrier membrane for CO2 facilitated transport in under the dry condition and acted as a fixed reaction site membrane in the water swollen condition. The carrier transport mechanism is discussed for dry and aqueous membranes.  相似文献   

5.
An extraction experiment of penicillin G was performed in an emulsion liquid membrane system in which only ECA 4360J exists in the organic membrane phase without a predominant carrier, Amberlite LA-2, used in our previous works and it functions as a carrier as well as a surfactant. A permeation model for the present system has been developed as a primary study to examine the transport mechanism of penicillin G in the previous batch and continuous systems with two carriers of Amberlite LA-2 and ECA 4360J. The model takes into account the mass transfer in the external aqueous film, the extraction reaction between penicillin G and ECA 4360J at the external interface, the diffusion of penicillin G in the emulsion phase, the stripping reaction at the internal interface and the pH change of internal aqueous solution containing Na2CO3 with penicillin G transported into the internal phase. The experimental data were well fitted with the present model. Also, an expression for the reaction of penicillin G with ECA 4360J was obtained through a series of equilibrium measurements in liquid–liquid extraction system.  相似文献   

6.
A membrane-sparged helical tubular photobioreactor (MSTR) with a cultivation volume of 800 ml was designed in this study. It consisted of a cylindrical-shaped light receiver and a mass transfer system. A helical tube was used to ensure good light regime, and hollow fiber membranes were uniformly fitted inside the reactor, which functioned as a gas sparger and produced small bubbles. Mass transfer coefficients, mixing intensities and capabilities of CO2 biofixation through the photosynthesis of Chlorella vulgaris in MSTR under different gas, liquid flow rates and light intensities were compared with two other photobioreactors (BCTR and MCTR). BCTR took a perforated pipe as sparger, while MCTR employed a membrane contactor as the whole mass transfer system. To establish if the limitation of CO2 removal was improved in MSTR, pH, dissolved oxygen, cell damage, and characteristic times for mixing, mass transfer and CO2 consumption were analyzed during batch culture.  相似文献   

7.
The effect of graphene oxide (GO) nanosheets on the CO2/CH4 separation performance of a rubbery (poly(dimethylsiloxane), PDMS) as well as a glassy (polyetherimide, PEI) polymer is studied. Interfacial interactions between the nanosheets and both polymers are revealed by FTIR and SEM. The results of gas permeation through the membranes demonstrate that GO nanosheets enhance CO2/CH4 diffusivityselectivity of PEI and CO2/CH4 solubility-selectivities of the PEI and PDMS polymers, while diminish CO2/CH4 diffusivity-selectivity of PDMS. Furthermore, the possibility of overcoming the common tradeoff between CO2 permeability and CO2/CH4 selectivity of rubbery and glassy polymers by incorporating very low amounts of graphene oxide nanosheets is addressed. In other words, at 0.25 wt % GO loading, the PEI membrane shows simultaneous enhancement of CO2 permeability (16%) and CO2/CH4 selectivity (59%). Also, for the PDMS membrane simultaneous enhancement of CO2 permeability (29%) and CO2/CH4 selectivity (112%) is occurred at 0.5 wt % GO loading. Finally, the capability of the well known Nielsen model to predict the gas permeability behavior of the nanocomposites is investigated.  相似文献   

8.
Efficiently separating CO2 from H2 is one of the key steps in the environmentally responsible uses of fossil fuel for energy production. A wide variety of resources, including petroleum coke, coal, and even biomass, can be gasified to produce syngas (a mixture of CO and H2). This gas stream can be further reacted with water to produce CO2 and more H2. Once separated, the CO2 can be stored in a variety of geological formations or sequestered by other means. The H2 can be combusted to operate a turbine, producing electricity, or used to power hydrogen fuel cells. In both cases, only water is produced as waste. An amine-functionalized ionic liquid encapsulated in a supported ionic liquid membrane (SILM) can separate CO2 from H2 with a higher permeability and selectivity than any known membrane system. This separation is accomplished at elevated temperatures using facilitated transport supported ionic liquid membranes.  相似文献   

9.

The transport of Hg (II) ions from an aqueous solution into an aqueous receiving solution through bulk and supported liquid membranes containing a calix[4]arene derivative 1 as a carrier was examined. The kinetic parameters of bulk liquid membrane studies were analyzed assuming two consecutive, irreversible first‐order reactions. The influence of temperature, stirring rate, carrier concentration and solvent on the kinetic parameters (k1, k2, Rm max, tmax, Jd max, Ja max) has also been investigated. The membrane entrance rate, k1, and the membrane exit rate, k2, increased with increasing temperature and stirring rate. The activation energy values are calculated as 4.87 and 48.63 kj mol?1 for extraction and reextraction, respectively. The values of calculated activation energy indicate that the process is diffusionally controlled by species. Also, the transport behavior of Hg2+ from aqueous solution through a flat‐sheet supported liquid membrane has been investigated by the use of calix[4]arene derivative 1 as carrier and Celgard 2500 as the solid support. A Danesi mass transfer model was used to calculate the permeability coefficients for each parameter studied. The highest values of permeability were obtained with 2‐nitrophenyloctyl‐ether (NPOE) solvent and the influence was found to be in the order of NPOE>chloroform>xylene.  相似文献   

10.
The application of enhanced fluidity liquid (EFL) mobile phases to improving isocratic chromatographic separation of nucleosides in hydrophilic interaction liquid chromatography (HILIC) mode is described. The EFL mobile phase was created by adding carbon dioxide to a methanol/buffer solution. Previous work has shown that EFL mobile phases typically increase the efficiency and the speed of the separation. Herein, an increase in resolution with the addition of carbon dioxide is also observed. This increase in resolution was achieved through increased selectivity and retention with minimal change in separation efficiency. The addition of CO2 to the mobile phase effectively decreases its polarity, thereby promoting retention in HILIC. Conventional organic solvents of similar nonpolar nature cannot be used to achieve similar results because they are not miscible with methanol and water. The separation of nucleosides with methanol/aqueous buffer/CO2 mobile phases was also compared to that using acetonitrile/buffer mobile phases. A marked decrease in the necessary separation time was noted for methanol/aqueous buffer/CO2 mobile phases compared to acetonitrile/buffer mobile phases. There was also an unusual reversal in the elution order of uridine and adenosine when CO2 was included in the mobile phase.  相似文献   

11.
Highly permeable glassy polymeric membranes based on poly (1‐trimethylsilyl‐1‐propyne) (PTMSP) and a polymer of intrinsic porosity (PIM‐1) were investigated for water sorption, water permeability and the separation of CO2 from N2 under humid mixed gas conditions. The water sorption isotherms for both materials followed behavior indicative of multilayer adsorption within the microvoids, with PIM‐1 registering a significant water uptake at very high water activities. Analysis of the sorption isotherms using a modified dual sorption model which accounts for such multilayer effects gave Langmuir affinity constants more consistent with lighter gases than the use of the standard dual mode approach. The water permeability through PTMSP and PIM‐1 was comparable over the water activities studied, and could be successfully model ed through a dual mode sorption model with a concentration dependent diffusivity. The water permeability through both membranes as a function of temperature was also measured, and found to be at a minimum at 80 ° C for PTMSP and 70 °C for PIM‐1. This temperature dependence is a function of reducing water solubility in both membranes with increasing temperature countered by increasing water diffusivity. The CO2 ‐ N2 mixed gas permeabilities through PTMSP and PIM‐1 were also measured and model ed through dual mode sorption theory. Introducing water vapour further reduced both the CO2 and N2 permeabilities. The plasticization potential of water in PTMSP was determined and indicated water swelled the membrane increasing CO2 and N2 diffusivity, while for PIM‐1 a negative potential implied that water filling of the microvoids hampered CO2 and N2 diffusion through the membrane. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 719–728  相似文献   

12.
Transport rates (permeability) and ideal separation factors for several gas pairs through dense polyaniline membranes are reported. The ideal separation factors for all gas pairs tested were found to be independent of the polyaniline membrane thickness whereas the permeability of the single gases showed significant variations. Both dedoped and redoped films (film thickness between 9 and 67 μm) were studied. The highest selectivities α(A/B) found were 7.6 for the gas pair H2/CO2 in the case of the dedoped membrane and 10 for the gas pair H2/CO2, 6 for O2/N2 and 200 for H2/N2 in the case of the redoped membrane. Statistical analysis of a large number of membranes allowed the critical comparison with results obtained by other groups.Comparison with other membrane materials shows that an approximately sixfold enhancement of the respective separation factors is possible for gas pairs containing hydrogen. Similar separation factors are observed for the gas pairs CO2/O2, CO2/N2 and N2/O2.Membranes for which Knudsen diffusion was observed exhibited regularly distributed micropores (400 nm diameter).  相似文献   

13.
The nonelectrolyte Wilson-nonrandom factor local composition model (N-Wilson-NRF) by Haghtalab and Mazloumi is applied for modeling the vapor–liquid equilibrium of the acid gases (CO2 and H2S)–alkanolamine–water systems. The model is used to calculate the nonideality of species in liquid phase through the activity coefficient equations. In this work, we use the N-Wilson-NRF model for short-range forces in the aqueous electrolyte system of alkanolamines by using the concept of ion-pair. For the long-range interaction the Pitzer–Debye–Hückel theory is applied. The model is used to correlation of the solubility data of CO2 and H2S in aqueous monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine (MDEA) and 2-amino-2methyl-1-propanol (AMP) systems over wide range of temperature (0–140 °C), partial pressure (0.001–1000 kPa) and acid gases loading (0.001–1.0 mol gas/mol amine). To show the predictability of the model, the interaction parameters without any additional adjustable parameters are used to predict the solubility of CO2 in aqueous AMP solution at different conditions. The results of the model show a very good agreement with the experimental data.  相似文献   

14.
Two models for the permeability of pure gases have been extended to include binary gas mixtures. The first is an extension of a pure gas permeability model, proposed by Petropoulos, which is based on gradients of chemical potential. This model predicts the permeability of components in a gas mixture solely on the basis of competition for sorption sites within the polymer matrix. The second mixed gas model follows an earlier analysis by Barrer for pure gases which includes the effects of saturation of Langmuir sites on the diffusion as well as the sorption processes responsible for permeation. This generalized “competitive sorption/diffusion” model includes the effect of each gas component on the sorption and diffusion of the other component in the mixture. The flux equations from these two models have been solved numerically to predict the permeability of gas mixtures on the basis of pure gas sorption and transport parameters. Both the mixed gas Petropoulos and competitive sorption/diffusion model predictions are compared with predictions from the earlier simple competitive sorption model based on gradients of concentration. An analysis of all three models is presented for the case of CO2/CH4 permeability in poly(phenylene oxide) (PPO). As expected, the competitive sorption/diffusion model predicts lower permeability than either of the models which consider only competitive sorption effects. The permeability depression of both CO2 and CH4 predicted by the competitive sorption/diffusion model is roughly twice that predicted by the competitive sorption model, whereas the mixed gas Petropoulos model predictions for both gases lie between the other two model predictions. For the PPO/CO2/CH4 system, the methane permeability data lie above the predictions of all three models, whereas CO2 data lie below the predictions of all models. Consequently, the competitive sorption/diffusion model gives the most accurate prediction for CO2, while the simple competitive sorption model is best for methane. The effects of mixed gas sorption, fugacity, and CO2-induced dilation were considered and do not explain the inaccuracies of any of the models. The relatively small errors in mixed gas permeability predictions using either of the three models are likely to be related to “transport plasticization” of PPO owing to high levels of CO2 sorption and its effect on polymer segmental motions and gas diffusivity.  相似文献   

15.
The development of functionalized polyolefins for use as stimuli-responsive commodity polymers has recently received much attention. In this work, a microporous polypropylene (PP) scaffold is used to align and fortify a smectic liquid crystalline network (LCN) which can switch its gas permeability upon pH changes. The LCN is a photopolymerized liquid crystalline mixture of a dimerized benzoic acid derivative monoacrylate and a diacrylate crosslinker. In the hydrogen-bonded state, the composite membrane shows a high-molecular order and a low permeability for He, N2, and CO2 gases. By pH switching from the hydrogen-bonded state to the salt form, the molecular order is reduced, and the gas permeability is increased by one order of magnitude. This increase is mainly attributed to a loss in order of the system, increasing the free volume, resulting in an increased diffusibility. By exposing the composite film to basic or acidic environments, reversible switching between low and high gas permeability states is observed, respectively. The physical constraints imposed by the PP scaffold strengthens the membrane while the reversible switching inside the liquid crystalline polymer is maintained. This switching of gas permeation properties is not possible with the fragile freestanding LCN films alone.  相似文献   

16.
A dynamic method for investigating the mechanism of permeation and diffusion through polymers has been explored. The permeation cell consists of two compartments separated by the membrane. The permeant (gas, vapor, or liquid) is introduced into one compartment; a carrier gas (helium) flows at constant rate through the other and sweeps the permeant which diffuses through the membrane to the thermal conductivity detector. Both compartments are at atmospheric pressure; thus no or little membrane support is required, and leakage problems are minimal. Moreover, the same membrane can be used over a wide temperature range and for diverse permeants. The detector signal is at any instant proportional to the permeation rate. A simple mathematical formalism for deriving the diffusion coefficient from the transient permeation rates has been developed. The measured diffusion and permeability coefficients of CO2, O2, and N2 through low-density polyethylene closely agree with literature values. Permeation of hexane and benzene through polyethylene follows a complex diffusion law, and the rate depends on the thermal history of the system. The dynamic method is particularly suited to the study of transitions in polymers. Changes in permeation rates, usually occurring at transition points, can easily be discovered by slow temperature scanning of the system.  相似文献   

17.
A catalytic membrane hybrid system based on a cermet membrane with a channel size 〈d〉 of ~0.12 μm has been produced using sol-gel processing. A layer of a superfine methanol conversion catalyst with the composition Cr2O3 · Al2O3 · ZnO has been formed on the inner surface of the channels, and a thin oxide coating of composition P0.03Ti0.97O2 ± δ with a homogeneous porous structure and 〈d〉 ~ 2 nm has been formed on the geometric membrane surface. The methanol conversion rate and the gas permeability of the membrane depend considerably on the methanol vapor and gas (H2, He, CO2, Ar, CH4) flow directions. When methanol vapor diffuses toward the mesoporous layer, the catalytic activity is one order of magnitude higher and the gas permeability coefficients are 3–8 times lower than in the case of the reverse flow of the gaseous molecules. The temperature dependence of the gas permeability taking into account the possible types of mass transfer in porous solids suggests that, when the gases move toward the mesoporous coating consisting of phosphorus-modified titanium oxide, surface flow and activated diffusion dominate, whereas the reverse gas motion is dominated by free molecular flow.  相似文献   

18.
The sorption and permeation of pentane, hexane, and toluene through highly permeable polymer of intrinsic microporosity (PIM‐1) membranes were investigated. It was established that the hydrocarbons sorbed strongly within the micro‐void regions of the PIM‐1 membrane. The sorption concentration was similar for the paraffins, pentane and hexane, but greater for aromatic toluene at high vapor activities. The magnitude of the hydrocarbon permeability was associated with the critical temperature of the hydrocarbon. The PIM‐1 membrane displayed selectivity for the three hydrocarbons over CO2. As a consequence, the presence of the three hydrocarbons dramatically reduced the permeability of CO2 and N2 under mixed gas–vapor conditions to 68%–95% below the dry gas value. For all three hydrocarbons the N2 permeability was more strongly impacted than CO2 permeability, and hence the ideal CO2/N2 selectivity of PIM‐1 increased. It was determined that CO2 and N2 solubility decreased because of hydrocarbon competitive sorption while CO2 and N2 diffusivity also decreased because of anti‐plasticization, which was due to the presence of hydrocarbon clusters within the membrane structure. There was a clear correlation between the magnitude of anti‐plasticization and the critical temperature of the hydrocarbon. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 397–404  相似文献   

19.
Both homogeneous and asymmetric polyethersulfone (PES) membranes were prepared by solvent casting. The sorption and permeation behavior of CO2, O2, and N2 using these two kinds of cast PES membranes and commercially available homogeneous PES film was investigated to extract the pressure dependence of gas permeability and the permselectivity for CO2 relative to N2, and to confirm the validity of the working assumption that a skin layer in an asymmetric membrane can be essentially replaced by a thick homogeneous dense membrane. The pressure dependence of the mean permeability coefficient to CO2 in homogeneous membranes obeys the dual-mode mobility model. The ideal separation factor for CO2 relative to N2 at an upstream pressure of 0.5 MPa attains ca. 40, while the permeability to CO2 is about 2.7 Barrer at the same upstream pressure. The same separation factor in asymmetric membranes amounts to 35. The diffusion behavior for the skin layer in an asymmetric membrane with a thin skin layer can be simulated approximately by that in a homogeneous dense membrane. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Diffusion, solubility, and permebility coefficients were measured for He, Co2, Ar, and CH4 in polybutadiene (PB) and in polybutadiene reacted in the solid state to various extents with aqueous bromine. Analysis of the sorption curves and X-ray emission spectra showed that the bromination created a heterogeneous membrane with an outer brominated skin and an unreacted core. At relatively low extent of bromination, the diffusion and permeability coefficients for CO2, Ar, and CH4 decreased by two orders of magnitude, while the transport coefficients for He were virtually unchanged. The permeability coefficients for CO2, Ar, and CH4 became immeasurably small after about 3% bromination. The ideal separation factor for gas pairs with different molecular size increased with bromination, suggesting applications in gas separation processes. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号