首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let k1, k2,…, kn be given integers, 1 ? k1 ? k2 ? … ? kn, and let S be the set of vectors x = (x1,…, xn) with integral coefficients satisfying 0 ? xi ? ki, i = 1, 2, 3,…, n. A subset H of S is an antichain (or Sperner family or clutter) if and only if for each pair of distinct vectors x and y in H the inequalities xi ? yi, i = 1, 2,…, n, do not all hold. Let |H| denote the number of vectors in H, let K = k1 + k2 + … + kn and for 0 ? l ? K let (l)H denote the subset of H consisting of vectors h = (h1, h2,…, hn) which satisfy h1 + h2 + … + hn = l. In this paper we show that if H is an antichain in S, then there exists an antichain H′ in S for which |(l)H′| = 0 if l < K2, |(K2)H′| = |(K2)H| if K is even and |(l)H′| = |(l)H| + |(K ? l)H| if l>K2.  相似文献   

2.
Let S be a set of n elements, and k a fixed positive integer <12n. Katona's problem is to determine the smallest integer m for which there exists a family A = {A1, …, Am} of subsets of S with the following property: |i| ? k (i = 1, …, m), and for any ordered pair xi, xiS (ij) there is A1A such that xiA1, xj ? A1. It is given in this note that m = ?2nk? if12k2 ? 2.  相似文献   

3.
In this paper, the problem of phase reconstruction from magnitude of multidimensional band-limited functions is considered. It is shown that any irreducible band-limited function f(z1…,zn), zi ? C, i=1, …, n, is uniquely determined from the magnitude of f(x1…,xn): | f(x1…,xn)|, xi ? R, i=1,…, n, except for (1) linear shifts: i(α1z1+…+αn2n+β), β, αi?R, i=1,…, n; and (2) conjugation: f1(z11,…,zn1).  相似文献   

4.
Davio and Deschamps have shown that the solution set, K, of a consistent Boolean equation ?(x1, …, xn)=0 over a finite Boolean algebra B may be expressed as the union of a collection of subsets of Bn, each of the form {(x1, …, xn) | aixibi, ai?B, bi?B, i = 1, …, n}. We refer to such subsets of Bn as segments and to the collection as a segmental cover of K. We show that ?(x1, …, xn) = 1 is consistent if and only if ? can be expressed by one of a class of sum-of-products expressions which we call segmental formulas. The object of this paper is to relate segmental covers of K to segmental formulas for ?.  相似文献   

5.
If k is a perfect field of characteristic p ≠ 0 and k(x) is the rational function field over k, it is possible to construct cyclic extensions Kn over k(x) such that [K : k(x)] = pn using the concept of Witt vectors. This is accomplished in the following way; if [β1, β2,…, βn] is a Witt vector over k(x) = K0, then the Witt equation yp ? y = β generates a tower of extensions through Ki = Ki?1(yi) where y = [y1, y2,…, yn]. In this paper, it is shown that there exists an alternate method of generating this tower which lends itself better for further constructions in Kn. This alternate generation has the form Ki = Ki?1(yi); yip ? yi = Bi, where, as a divisor in Ki?1, Bi has the form (Bi) = qΠpjλj. In this form q is prime to Πpjλj and each λj is positive and prime to p. As an application of this, the alternate generation is used to construct a lower-triangular form of the Hasse-Witt matrix of such a field Kn over an algebraically closed field of constants.  相似文献   

6.
Nous donnons une généralisation et une démonstration très courte d'un théorème de Kleitman qui dit: Pour toute paire d'idéaux F, (β) d'éléments dans le produit cartésien de k ensembles totalement ordonnés P = [1, 2, … n1] ? … ? [1, 2, … nk], nous avons (|F||P|). (|(β)||P|) ? | F ∩ (β)||P| ou en langage probabiliste Pr(F ? Pr (F|(β)).  相似文献   

7.
Let kn ? kn?1 ? … ? k1 be positive integers and let (ij) denote the coefficient of xi in Πr=1j (1 + x + x2 + … + xkr). For given integers l, m, where 1 ? l ? kn + kn?1 + … + k1 and 1 ? m ? (nn), it is shown that there exist unique integers m(l), m(l ? 1),…, m(t), satisfying certain conditions, for which m = (m(l)l + (m(l?1)l?1) + … + (m(t)t). Moreover, any m l-subsets of a multiset with ki elements of type i, i = 1, 2,…, n, will contain at least (m(l)l?1) + (m(l?1)l?2) + … + (m(t)t?1 different (l ? 1)-subsets. This result has been anticipated by Greene and Kleitman, but the formulation there is not completely correct. If k1 = 1, the numbers (ji) are binomial coefficients and the result is the Kruskal-Katona theorem.  相似文献   

8.
Let M be a finite set consisting of ki elements of type i, i = 1, 2,…, n and let S denote the set of subsets of M or, equivalently, the set of all vectors x = (x1, x2,…,xn) with integral coefficients xi satisfying 0 ? xi ? ki, i = 1, 2,…, n. An antichain
is a subset of S in which there is no pair of distinct vectors x and y such that x is contained in y (that is, there is no pair of distinct vectors x and y such that the inequalities xi ? yi, i = 1, 2,…, n all hold). Let ∥Y denote the number of vectors in S which are contained in at least one vector in
and let ∥B∥=∑x∈(X1+X2+?+Xn), the number of basic elements in
. For given m we give procedures for calculating min ∥Y and min ∥B, where the minima are taken over all m-element antichains
in S.  相似文献   

9.
Let D be an (m,n;k12)-group divisible difference set (GDDS) of a group G, written additively, relative to H, i.e. D is a k-element subset of G, H is a normal subgroup of G of index m and order n and for every nonzero element g of G,?{(d1,d2)?,d1,d2?D,d1?d2=g}? is equal to λ1 if g is in H, and equal to λ2 if g is not in H. Let H1,H2,…,Hm be distinct cosets of H in G and Si=DHi for all i=1,2,…,m. Some properties of S1,S2,…,Sm are studied here. Table 1 shows all possible cardinalities of Si's when the order of G is not greater than 50 and not a prime. A matrix characterization of cyclic GDDS's with λ1=0 implies that there exists a cyclic affine plane of even order, say n, only if n is divisible by 4 and there exists a cyclic (n?1,12n?1,14n?1)-difference set.  相似文献   

10.
Let n denote the sample size, and let ri ∈ {1,…,n} fulfill the conditions ri ? ri?1 ≥ 5 for i = 1,…,k. It is proved that the joint normalized distribution of the order statistics Zri:n, i = 1,…,k, is independent of the underlying probability measure up to a remainder term of order O((kn)12). A counterexample shows that, as far as central order statistics are concerned, this remainder term is not of the order O((kn)12) if ri ? ri?1 = 1 for i = 2,…,k.  相似文献   

11.
Let 1 ? k1 ? k2 ? … ? kn be integers and let S denote the set of all vectors x = (x1, x2, …, xn) with integral coordinates satisfying 0 ? xi ? ki, i = 1, 2, …, n. The complement of x is (k1 ? x1, k2 ? x2, …, kn ? xn) and a subset X of S is an antichain provided that for any two distinct elements x, y of X, the inequalities xi ? yi, i = 1, 2, …, n, do not all hold. We determine an LYM inequality and the maximal cardinality of an antichain consisting of vectors and its complements. Also a generalization of the Erdös-Ko-Rado theorem is given.  相似文献   

12.
Let k1 ? k2? ? ? kn be given positive integers and let S denote the set of vectors x = (x1, x2, … ,xn) with integer components satisfying 0 ? x1 ? kni = 1, 2, …, n. Let X be a subset of S (l)X denotes the subset of X consisting of vectors with component sum l; F(m, X) denotes the lexicographically first m vectors of X; ?X denotes the set of vectors in S obtainable by subtracting 1 from a component of a vector in X; |X| is the number of vectors in X. In this paper it is shown that |?F(e, (l)S)| is an increasing function of l for fixed e and is a subadditive function of e for fixed l.  相似文献   

13.
Let A be an n-square normal matrix over C, and Qm, n be the set of strictly increasing integer sequences of length m chosen from 1,…, n. For α,βQm, n denote by A[α|β] the submatrix obtained from A by using rows numbered α and columns numbered β. For k∈{0,1,…,m} write z.sfnc;αβ|=k if there exists a rearrangement of 1,…,m, say i1,…,ik, ik+1,…,im, such that α(ij)=β(ij), j=1,…,k, and {α(ik+1),…,α(im)};∩{β(ik+1),…,β(im)}=ø. Let
be the group of n-square unitary matrices. Define the nonnegative number
?k(A)= maxU∈|det(U1AU) [α|β]|
, where |αβ|=k. Theorem 1 establishes a bound for ?k(A), 0?k<m?1, in terms of a classical variational inequality due to Fermat. Let A be positive semidefinite Hermitian, n?2m. Theorem 2 leads to an interlacing inequality which, in the case n=4, m=2, resolves in the affirmative the conjecture that
?m(A)??m?1(A)????0(A)
.  相似文献   

14.
The Dirichlet integral provides a formula for the volume over the k-dimensional simplex ω={x1,…,xk: xi?0, i=1,…,k, s?∑k1xi?T}. This integral was extended by Liouville. The present paper provides a matrix analog where now the region becomes Ω={V1,…,Vk: Vi>0, i=1,…,k, 0?∑Vi?t}, where now each Vi is a p×p symmetric matrix and A?B means that A?B is positive semidefinite.  相似文献   

15.
A p-cover of n = {1, 2,…,n} is a family of subsets Si ≠ ? such that ∪ Si = n and |SiSi| ? p for ij. We prove that for fixed p, the number of p-cover of n is O(np+1logn).  相似文献   

16.
Let V denote a finite dimensional vector space over a field K of characteristic 0, let Tn(V) denote the vector space whose elements are the K-valued n-linear functions on V, and let Sn(V) denote the subspace of Tn(V) whose members are the fully symmetric members of Tn(V). If Ln denotes the symmetric group on {1,2,…,n} then we define the projection PL : Tn(V) → Sn(V) by the formula (n!)?1Σσ ? Ln Pσ, where Pσ : Tn(V) → Tn(V) is defined so that Pσ(A)(y1,y2,…,yn = A(yσ(1),yσ(2),…,yσ(n)) for each A?Tn(V) and yi?V, 1 ? i ? n. If xi ? V1, 1 ? i ? n, then x1?x2? … ?xn denotes the member of Tn(V) such that (x1?x2· ? ? ?xn)(y1,y2,…,yn) = Пni=1xi(yi) for each y1 ,2,…,yn in V, and x1·x2xn denotes PL(x1?x2? … ?xn). If B? Sn(V) and there exists x i ? V1, 1 ? i ? n, such that B = x1·x2xn, then B is said to be decomposable. We present two sets of necessary and sufficient conditions for a member B of Sn(V) to be decomposable. One of these sets is valid for an arbitrary field of characteristic zero, while the other requires that K = R or C.  相似文献   

17.
If r, k are positive integers, then Tkr(n) denotes the number of k-tuples of positive integers (x1, x2, …, xk) with 1 ≤ xin and (x1, x2, …, xk)r = 1. An explicit formula for Tkr(n) is derived and it is shown that limn→∞Tkr(n)nk = 1ζ(rk).If S = {p1, p2, …, pa} is a finite set of primes, then 〈S〉 = {p1a1p2a2psas; piS and ai ≥ 0 for all i} and Tkr(S, n) denotes the number of k-tuples (x1, x3, …, xk) with 1 ≤ xin and (x1, x2, …, xk)r ∈ 〈S〉. Asymptotic formulas for Tkr(S, n) are derived and it is shown that limn→∞Tkr(S, n)nk = (p1 … pa)rkζ(rk)(p1rk ? 1) … (psrk ? 1).  相似文献   

18.
Let A be an n × n normal matrix over C, and Qm, n be the set of strictly increasing integer sequences of length m chosen from 1,…,n. For α, β ? Qm, n denote by A[α|β] the submatrix obtained from A by using rows numbered α and columns numbered β. For k ? {0, 1,…, m} we write |αβ| = k if there exists a rearrangement of 1,…, m, say i1,…, ik, ik+1,…, im, such that α(ij) = β(ij), i = 1,…, k, and {α(ik+1),…, α(im) } ∩ {β(ik+1),…, β(im) } = ?. A new bound for |detA[α|β ]| is obtained in terms of the eigenvalues of A when 2m = n and |αβ| = 0.Let Un be the group of n × n unitary matrices. Define the nonnegative number
where | αβ| = k. It is proved that
Let A be semidefinite hermitian. We conjecture that ρ0(A) ? ρ1(A) ? ··· ? ρm(A). These inequalities have been tested by machine calculations.  相似文献   

19.
20.
We study certain functionals and obtain an inverse Hölder inequality for n functions f1a1,…,fnan (fk concave, 1 dimension).We also prove a multidimensional inverse Hölder inequality for n functions f1,…,fn, where ?2fk?xi2 ? 0, i = 1,…, d, k = 1,…, n.Finally we give an inverse Minkowski inequality for concave functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号