首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A unified approach to a variety of graph-theoretic problems is introduced. The k-closure Ck(G) of a simple graph G of order n is the graph obtained from G by recursively joining pairs of nonadjacent vertices with degree-sum at least k. It is shown that, for many properties P, one can find a suitable value of k (depending on P and n) such that if Ck(G) has P, then so does G. For instance, if P is the hamiltonian property, one may take k = n. Thus if Cn(G) is hamiltonian, then so is G; in particular, if n ? 3 and Cn(G) is complete, then G is hamiltonian. This condition for a graph to be hamiltonian is shown to imply the well-known conditions of Chvátal and Las Vergnas. The same method, applied to other properties, yields many new theorems of a similar nature.  相似文献   

2.
In this paper we show that the entire graph of a bridgeless connected plane graph is hamiltonian, and that the entire graph of a plane block is hamiltonian connected and vertex pancyclic. In addition, we show that in any block G which is not a circuit, given a vertex v of G and a circuit k of G, there is a path p, suspended in G, such that p is a path in k of length at least 1 and G ? E(p) ? V0(G ? E(p)) is a block which includes v.  相似文献   

3.
Let G=(V,E) be a graph with V={1,2,…,n}. Define S(G) as the set of all n×n real-valued symmetric matrices A=[aij] with aij≠0,ij if and only if ijE. By M(G) we denote the largest possible nullity of any matrix AS(G). The path cover number of a graph G, denoted P(G), is the minimum number of vertex disjoint paths occurring as induced subgraphs of G which cover all the vertices of G.There has been some success with relating the path cover number of a graph to its maximum nullity. Johnson and Duarte [5], have shown that for a tree T,M(T)=P(T). Barioli et al. [2], show that for a unicyclic graph G,M(G)=P(G) or M(G)=P(G)-1. Notice that both families of graphs are outerplanar. We show that for any outerplanar graph G,M(G)?P(G). Further we show that for any partial 2-path G,M(G)=P(G).  相似文献   

4.
Let G = (V, E) be a connected graph. The hamiltonian index h(G) (Hamilton-connected index hc(G)) of G is the least nonnegative integer k for which the iterated line graph L k (G) is hamiltonian (Hamilton-connected). In this paper we show the following. (a) If |V(G)| ≥ k + 1 ≥ 4, then in G k , for any pair of distinct vertices {u, v}, there exists k internally disjoint (u, v)-paths that contains all vertices of G; (b) for a tree Th(T) ≤ hc(T) ≤ h(T) + 1, and for a unicyclic graph G,  h(G) ≤ hc(G) ≤ max{h(G) + 1, k′ + 1}, where k′ is the length of a longest path with all vertices on the cycle such that the two ends of it are of degree at least 3 and all internal vertices are of degree 2; (c) we also characterize the trees and unicyclic graphs G for which hc(G) = h(G) + 1.  相似文献   

5.
LetG be an infinite connected graph with vertex setV. Ascenery onG is a map ξ :V → 0, 1 (equivalently, an assignment of zeroes and ones to the vertices ofG). LetS n n≥0 be a simple random walk onG, starting at some distinguished vertex v0. Now let ξ and η be twoknown sceneries and assume that we observe one of the two sequences ξ(S n) n≥0 or {η(S n)} n≥0 but we do not know which of the two sequences is observed. Can we decide, with a zero probability of error, which of the two sequences is observed? We show that ifG = Z orG = Z2, then the answer is “yes” for each fixed ξ and “almost all” η. We also give some examples of graphsG for which almost all pairs (ξ, η) are not distinguishable, and discuss some variants of this problem.  相似文献   

6.
Let G=(V,E) be an undirected graph with a node set V and an arc set E. G has k pairwise disjoint subsets T1,T2,…,Tk of nodes, called resource sets, where |Ti| is even for each i. The partition problem with k resource sets asks to find a partition V1 and V2 of the node set V such that the graphs induced by V1 and V2 are both connected and |V1Ti|=|V2Ti|=|Ti|/2 holds for each i=1,2,…,k. The problem of testing whether such a bisection exists is known to be NP-hard even in the case of k=1. On the other hand, it is known that if G is (k+1)-connected for k=1,2, then a bisection exists for any given resource sets, and it has been conjectured that for k?3, a (k+1)-connected graph admits a bisection. In this paper, we show that for k=3, the conjecture does not hold, while if G is 4-connected and has K4 as its subgraph, then a bisection exists and it can be found in O(|V|3log|V|) time. Moreover, we show that for an arc-version of the problem, the (k+1)-edge-connectivity suffices for k=1,2,3.  相似文献   

7.
A Michigan graph G on a vertex set V is called semi-stable if for some υ?V, Γ(Gυ) = Γ(G)υ. It can be shown that all regular graphs are semi-stable and this fact is used to show (i) that if Γ(G) is doubly transitive then G = Kn or K?n, and (ii) that Γ(G) can be recovered from Γ(Gυ). The second result is extended to the case of stable graphs.  相似文献   

8.
A graph is a pair (V, I), V being the vertices and I being the relation of adjacency on V. Given a graph G, then a collection of functions {fi}mn=1, each fi mapping each vertex of V into anarc on a fixed circle, is said to define an m-arc intersection model for G if for all x,y ? V, xly ? (∨i?m)(fi(x)∩fi(y)≠Ø). The circular dimension of a graph G is defined as the smallest integer m such that G has an m-arc intersection model. In this paper we establish that the maximum circular dimension of any complete partite graph having n vertices is the largest integer p such that 2p+p?n+1.  相似文献   

9.
A vertex set S in a graph G is a geodetic set if every vertex of G lies on some u?v geodesic of G, where u,vS. The geodetic number g(G) of G is the minimum cardinality over all geodetic sets of G. Let G 1 and G 2 be disjoint copies of a graph G, and let σ:V(G 1)→V(G 2) be a bijection. Then, a permutation graph G σ =(V,E) has the vertex set V=V(G 1)∪V(G 2) and the edge set E=E(G 1)∪E(G 2)∪{uvv=σ(u)}. For any connected graph G of order n≥3, we prove the sharp bounds 2≤g(G σ )≤2n?(1+△(G)), where △(G) denotes the maximum degree of G. We give examples showing that neither is there a function h 1 such that g(G)<h 1(g(G σ )) for all pairs (G,σ), nor is there a function h 2 such that h 2(g(G))>g(G σ ) for all pairs (G,σ). Further, we characterize permutation graphs G σ satisfying g(G σ )=2|V(G)|?(1+△(G)) when G is a cycle, a tree, or a complete k-partite graph.  相似文献   

10.
J. Gómez 《Discrete Mathematics》2008,308(15):3361-3372
Let G=(V,E) be a finite non-empty graph, where V and E are the sets of vertices and edges of G, respectively, and |V|=n and |E|=e. A vertex-magic total labeling (VMTL) is a bijection λ from VE to the consecutive integers 1,2,…,n+e with the property that for every vV, , for some constant h. Such a labeling is super if λ(V)={1,2,…,n}. In this paper, two new methods to obtain super VMTLs of graphs are put forward. The first, from a graph G with some characteristics, provides a super VMTL to the graph kG graph composed by the disjoint unions of k copies of G, for a large number of values of k. The second, from a graph G0 which admits a super VMTL; for instance, the graph kG, provides many super VMTLs for the graphs obtained from G0 by means of the addition to it of various sets of edges.  相似文献   

11.
It was conjectured that for each simple graph G=(V,E) with n=|V(G)| vertices and m=|E(G)| edges, it holds M2(G)/mM1(G)/n, where M1 and M2 are the first and second Zagreb indices. Hansen and Vuki?evi? proved that it is true for all chemical graphs and does not hold in general. Also the conjecture was proved for all trees, unicyclic graphs, and all bicyclic graphs except one class. In this paper, we show that for every positive integer k, there exists a connected graph such that mn=k and the conjecture does not hold. Moreover, by introducing some transformations, we show that M2/(m−1)>M1/n for all bicyclic graphs and it does not hold for general graphs. Using these transformations we give new and shorter proofs of some known results.  相似文献   

12.
13.
Let Tn, n = 1,2,… be a sequence of linear contractions on the space where is a finite measure space. Let M be the subspace of L1 for which Tngg weakly in L1 for g?M. If Tn1 → 1 strongly, then Tnff strongly for all f in the closed vector sublattice in L1 generated by M.This result can be applied to the determination of Korovkin sets and shadows in L1. Given a set G ? L1, its shadow S(G) is the set of all f?L1 with the property that Tnff strongly for any sequence of contractions Tn, n = 1, 2,… which converges strongly to the identity on G; and G is said to be a Korovkin set if S(G) = L1. For instance, if 1 ?G, then, where M is the linear hull of G and BM is the sub-σ-algebra of B generated by {x?X: g(x) > 0} for g?M. If the measure algebra is separable, has Korovkin sets consisting of two elements.  相似文献   

14.
For finite graphs F and G, let NF(G) denote the number of occurrences of F in G, i.e., the number of subgraphs of G which are isomorphic to F. If F and G are families of graphs, it is natural to ask then whether or not the quantities NF(G), FF, are linearly independent when G is restricted to G. For example, if F = {K1, K2} (where Kn denotes the complete graph on n vertices) and F is the family of all (finite) trees, then of course NK1(T) ? NK2(T) = 1 for all TF. Slightly less trivially, if F = {Sn: n = 1, 2, 3,…} (where Sn denotes the star on n edges) and G again is the family of all trees, then Σn=1(?1)n+1NSn(T)=1 for all TG. It is proved that such a linear dependence can never occur if F is finite, no FF has an isolated point, and G contains all trees. This result has important applications in recent work of L. Lovász and one of the authors (Graham and Lovász, to appear).  相似文献   

15.
Let G=(V,E) be a graph. A set SV is a restrained dominating set (RDS) if every vertex not in S is adjacent to a vertex in S and to a vertex in V?S. The restrained domination number of G, denoted by γr(G), is the minimum cardinality of an RDS of G. A set SV is a total dominating set (TDS) if every vertex in V is adjacent to a vertex in S. The total domination number of a graph G without isolated vertices, denoted by γt(G), is the minimum cardinality of a TDS of G.Let δ and Δ denote the minimum and maximum degrees, respectively, in G. If G is a graph of order n with δ?2, then it is shown that γr(G)?n-Δ, and we characterize the connected graphs with δ?2 achieving this bound that have no 3-cycle as well as those connected graphs with δ?2 that have neither a 3-cycle nor a 5-cycle. Cockayne et al. [Total domination in graphs, Networks 10 (1980) 211-219] showed that if G is a connected graph of order n?3 and Δ?n-2, then γt(G)?n-Δ. We further characterize the connected graphs G of order n?3 with Δ?n-2 that have no 3-cycle and achieve γt(G)=n-Δ.  相似文献   

16.
A simple graph G=(V,E) admits a cycle-covering if every edge in E belongs at least to one subgraph of G isomorphic to a given cycle C. Then the graph G is C-magic if there exists a total labelling f:VE→{1,2,…,|V|+|E|} such that, for every subgraph H=(V,E) of G isomorphic to C, ∑vVf(v)+∑eEf(e) is constant. When f(V)={1,…,|V|}, then G is said to be C-supermagic.We study the cyclic-magic and cyclic-supermagic behavior of several classes of connected graphs. We give several families of Cr-magic graphs for each r?3. The results rely on a technique of partitioning sets of integers with special properties.  相似文献   

17.
Let G=(V(G),E(G)) be a unicyclic simple undirected graph with largest vertex degree Δ. Let Cr be the unique cycle of G. The graph G-E(Cr) is a forest of r rooted trees T1,T2,…,Tr with root vertices v1,v2,…,vr, respectively. Let
  相似文献   

18.
A graph G of order p ? 3 is called n-hamiltonian, 0 ? n ? p ? 3, if the removal of any m vertices, 0 ? m ? n, results in a hamiltonian graph. A graph G of order p ? 3 is defined to be n-hamiltonian, ?p ? n ? 1, if there exists ?n or fewer pairwise disjoint paths in G which collectively span G. Various conditions in terms of n and the degrees of the vertices of a graph are shown to be sufficient for the graph to be n-hamiltonian for all possible values of n. It is also shown that if G is a graph of order p ? 3 and K(G) ? β(G) + n (?p ? n ? p ? 3), then G is n-hamiltonian.  相似文献   

19.
Ore proved in 1960 that if G is a graph of order n and the sum of the degrees of any pair of nonadjacent vertices is at least n, then G has a hamiltonian cycle. In 1986, Li Hao and Zhu Yongjin showed that if n ? 20 and the minimum degree δ is at least 5, then the graph G above contains at least two edge disjoint hamiltonian cycles. The result of this paper is that if n ? 2δ2, then for any 3 ? l1 ? l2 ? ? ? lk ? n, 1 = k = [(δ - 1)/2], such graph has K edge disjoint cycles with lengths l1, l2…lk, respectively. In particular, when l1 = l2 = ? = lk = n and k = [(δ - 1)/2], the graph contains [(δ - 1)/2] edge disjoint hamiltonian cycles.  相似文献   

20.
A graph H of order n is said to be k-placeable into a graph G of order n, if G contains k edge-disjoint copies of H. It is well known that any non-star tree T of order n is 2-placeable into the complete graph Kn. In the paper by Kheddouci et al. [Packing two copies of a tree into its fourth power, Discrete Math. 213 (2000) 169-178], it is proved that any non-star tree T is 2-placeable into T4. In this paper, we prove that any non-star tree T is 2-placeable into T3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号