共查询到20条相似文献,搜索用时 15 毫秒
1.
We present new generalized-ensemble molecular dynamics simulation algorithms, which we refer to as the multibaric-multithermal molecular dynamics. We describe three algorithms based on (1) the Nosé thermostat and the Andersen barostat, (2) the Nosé-Poincaré thermostat and the Andersen barostat, and (3) the Gaussian thermostat and the Andersen barostat. The multibaric-multithermal simulations perform random walks widely both in the potential-energy space and in the volume space. Therefore, one can calculate isobaric-isothermal ensemble averages in wide ranges of temperature and pressure from only one simulation run. We test the effectiveness of the multibaric-multithermal algorithm by applying it to a Lennard-Jones 12-6 potential system. 相似文献
2.
Ikeguchi M 《Journal of computational chemistry》2004,25(4):529-541
A partial rigid-body method of molecular dynamics simulations for proteins and membranes is presented. In this method, the symplectic integrator for rigid bodies is combined with the equations of motion for the NPT ensemble. The standard NPT ensemble is extended to the membrane-specific ensembles, the NPAT (constant normal pressure and lateral surface area of membranes and constant temperature) and NPgammaT (constant normal pressure and lateral surface tension of membranes and constant temperature) ensembles. By more than 30-ns simulations of aqueous proteins and hydrated lipid bilayers, the results of the partial rigid-body method demonstrated excellent conservation of total energy and consistent behavior with the traditional constraint method in terms of structural distribution and fluctuation of proteins and lipids. The efficient implementation of the partial rigid-body method in parallel computation is presented, which is shown to work well in large-scale molecular dynamics simulations. 相似文献
3.
An extended system Hamiltonian is proposed to perform molecular dynamics (MD) simulation in the grand canonical ensemble. The Hamiltonian is similar to the one proposed by Lynch and Pettitt (Lynch and Pettitt, J Chem Phys 1997, 107, 8594), which consists of the kinetic and potential energies for real and fractional particles as well as the kinetic and potential energy terms for material and heat reservoirs interacting with the system. We perform a nonlinear scaling of the potential energy parameters of the fractional particle, as well as its mass to vary the number of particles dynamically. On the basis of the equations of motion derived from this Hamiltonian, an algorithm has been proposed for MD simulation at constant chemical potential. The algorithm has been tested for the ideal gas, for the Lennard-Jones fluid over a wide range of temperatures and densities, and for water. The results for the low-density Lennard-Jones fluid are compared with the predictions from a truncated virial equation of state. In the case of the dense Lennard-Jones fluid and water our predicted results are compared with the results reported using other available methods for the calculation of the chemical potential. The method is also applied to the case of vapor-liquid coexistence point predictions. 相似文献
4.
Glättli A Daura X Bindschädler P Jaun B Mahajan YR Mathad RI Rueping M Seebach D van Gunsteren WF 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(24):7276-7293
The influence of charged side chains on the folding-unfolding equilibrium of beta-peptides was investigated by means of molecular dynamics simulations. Four different peptides containing only negatively charged side chains, positively charged side chains, both types of charged side chains (with the ability to form stabilizing salt bridges) or no charged side chains were studied under various conditions (different simulation temperatures, starting structures and solvent environment). The NMR solution structure in methanol of one of the peptides (A) has already been published; the synthesis and NMR analysis of another peptide (B) is described here. The other peptides (C and D) studied herein have hitherto not been synthesized. All four peptides A-D are expected to adopt a left-handed 3(14)-helix in solution as well as in the simulations. The resulting ensembles of structures were analyzed in terms of conformational space sampled by the peptides, folding behavior, structural properties such as hydrogen bonding, side chain-side chain and side chain-backbone interactions and in terms of the level of agreement with the NMR data available for two of the peptides. It was found that the presence of charged side chains significantly slows down the folding process in methanol solution due to the stabilization of intermediate conformers with side chain-backbone interactions. In water, where the solvent competes with the solute-solute polar interactions, the folding process to the 3(14)-helix is faster in the simulations. 相似文献
5.
《Journal of computational chemistry》2017,38(25):2193-2206
GENeralized‐Ensemble SImulation System (GENESIS) is a software package for molecular dynamics (MD) simulation of biological systems. It is designed to extend limitations in system size and accessible time scale by adopting highly parallelized schemes and enhanced conformational sampling algorithms. In this new version, GENESIS 1.1, new functions and advanced algorithms have been added. The all‐atom and coarse‐grained potential energy functions used in AMBER and GROMACS packages now become available in addition to CHARMM energy functions. The performance of MD simulations has been greatly improved by further optimization, multiple time‐step integration, and hybrid (CPU + GPU) computing. The string method and replica‐exchange umbrella sampling with flexible collective variable choice are used for finding the minimum free‐energy pathway and obtaining free‐energy profiles for conformational changes of a macromolecule. These new features increase the usefulness and power of GENESIS for modeling and simulation in biological research. © 2017 Wiley Periodicals, Inc. 相似文献
6.
We performed several molecular dynamic studies of metal cations in aqueous solution. The alkali metal ion Li(+) and the first-row transition metal ion Mn(2+) have been chosen as model systems. Two different three-body corrections are proposed to mimic the crucial many-body effects of electrolyte solutions. The correction function, which includes attractive features of the three-body potential, performs considerably better than the purely repulsive interaction function. Structural and dynamic results show that this simple enhancement is able to satisfactorily reproduce experimental and higher-level results for the first hydration shell. 相似文献
7.
Energy exchange network of inter‐residue interactions within a thermally fluctuating protein molecule: A computational study 下载免费PDF全文
Takakazu Ishikura Yuki Iwata Tatsuro Hatano Takahisa Yamato 《Journal of computational chemistry》2015,36(22):1709-1718
Protein function is regulated not only by the structure but also by physical dynamics and thermal fluctuations. We have developed the computer program, CURrent calculation for proteins (CURP), for the flow analysis of physical quantities within thermally fluctuating protein media. The CURP program was used to calculate the energy flow within the third PDZ domain of the neuronal protein PSD‐95, and the results were used to illustrate the energy exchange network of inter‐residue interactions based on atomistic molecular dynamics simulations. The removal of the α3 helix is known to decrease ligand affinity by 21‐fold without changing the overall protein structure; nevertheless, we demonstrated that the helix constitutes an essential part of the network graph. © 2015 Wiley Periodicals, Inc. 相似文献
8.
We have used molecular dynamics simulations with a coarse‐grained model to study the effect of a particle on the crystallization of polymer melt. We analyzed in particular a bond order parameter to characterize the nucleation and crystallization process. Our calculations show that the presence of a particle modifies the free energy landscape of polymer melts, locally induces the ordering of polymer melts near the particle surface, and thus enhances the polymer crystallization. Because the interaction between the particle and polymers is repulsive, our results suggest that the origin of the enhancement for polymer crystallization is entropic. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2161–2166, 2007 相似文献
9.
Jia Liu Xiao‐Lin Wang Li Zhao Gang Zhang Zhong‐Yuan Lu Ze‐Sheng Li 《Journal of Polymer Science.Polymer Physics》2008,46(3):272-280
Classical molecular dynamics simulations have been used to investigate the absorption and diffusion behavior of polyethylene (PE) chains on the surface of the side‐wall of the carbon nanotube (CNT). Different degrees of polymerization from 50 to 80 at separate temperatures of 300, 400, 500, and 600 K are considered. Through the simulation, it is examined that the PE chains are absorbed on the surface of CNT and form stable composites with the nanotube as capsules. It is found that the most probable distance between the CNT and the C atoms in backbone of PE molecules only attribute to the temperature, and at T = 300 K, this distance is about 3.8 Å. Furthermore, the pattern of the composites mainly depends on the temperature and the length matching of the chains and the CNT. In particular, the PE chains keep approximately linear conformation, and extend along the axis of the CNT at the room temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 272–280, 2008 相似文献
10.
We have used molecular dynamics simulations to study the physical properties of modified TIP3P water model included in the CHARMM program, using four different methods-the Ewald summation technique, and three different spherical truncation methods-for the treatment of the long-range interactions. Both the structure and dynamics of the liquid water model were affected by the methods used to truncate the long-range interactions. For some of the methods artificial structuring of the model liquid was observed around the cutoff radius. The model liquid properties were also affected by the commonly applied temperature control methods. Four different methods for controlling the temperature of the system were studied, and the effects of these methods on the bulk properties for liquid water were analyzed. The system size was also found to change the dynamics of the model liquid water. Two control simulations with the SPC/E water model were carried out. The self-diffusion coefficient (D), the radial distribution function (g(OO)), the distance dependent Kirkwood G-factor [G(k)(r)] and the intermolecular potential energy (E(pot)) were determined from the different trajectories and compared with the experimental data. 相似文献
11.
Stephanie B. A. De Beer Alice GlÄttli Johannes Hutzler Nico P. E. Vermeulen Chris Oostenbrink 《Journal of computational chemistry》2011,32(10):2160-2169
4‐Hydroxyphenylpyruvate dioxygenase is a relevant target in both pharmaceutical and agricultural research. We report on molecular dynamics simulations and free energy calculations on this enzyme, in complex with 12 inhibitors for which experimental affinities were determined. We applied the thermodynamic integration approach and the more efficient one‐step perturbation. Even though simulations seem well converged and both methods show excellent agreement between them, the correlation with the experimental values remains poor. We investigate the effect of slight modifications on the charge distribution of these highly conjugated systems and find that accurate models can be obtained when using improved force field parameters. This study gives insight into the applicability of free energy methods and current limitations in force field parameterization. © 2011 Wiley Periodicals, Inc. J Comput Chem 2011 相似文献
12.
Sven Jakobtorweihen Thomas Ingram Irina Smirnova 《Journal of computational chemistry》2013,34(15):1332-1340
The importance of membrane‐water partition coefficients led to the recent extension of the conductor‐like screening model for realistic solvation (COSMO‐RS) to micelles and biomembranes termed COSMOmic. Compared to COSMO‐RS, this new approach needs structural information to account for the anisotropy of colloidal systems. This information can be obtained from molecular dynamics (MD) simulations. In this work, we show that this combination of molecular methods can efficiently be used to predict partition coefficients with good agreement to experimental data and enables screening studies. However, there is a discrepancy between the amount of data generated by MD simulations and the structural information needed for COSMOmic. Therefore, a new scheme is presented to extract data from MD trajectories for COSMOmic calculations. In particular, we show how to calculate the system structure from MD, the influence of lipid conformers, the relation to the COSMOmic layer size, and the water/lipid ratio impact. For a 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphocholine (DMPC) bilayer, 66 partition coefficients for various solutes were calculated. Further, 52 partition coefficients for a 1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phosphocholine (POPC) bilayer system were calculated. All these calculations were compared to experimental data. © 2013 Wiley Periodicals, Inc. 相似文献
13.
Current constant pressure molecular-dynamics (MD) algorithms are not consistent with the recent reformulation of the isothermal-isobaric (NpT) ensemble. The NpT ensemble partition function requires the use of a "shell" molecule to identify uniquely the volume of the system, thereby avoiding the redundant counting of configurations [e.g., G. J. M. Koper and H. Reiss, J. Phys. Chem. 100, 422 (1996); D. S. Corti, Phys. Rev. E, 64, 016128 (2001)]. So far, only the NpT Monte Carlo method has been updated to allow the system volume to be defined by a shell particle [D. S. Corti, Mol. Phys. 100, 1887 (2002)]. A shell particle has yet to be incorporated into MD simulations. The proper modification of the NpT MD algorithm is therefore the subject of this paper. Unlike Andersen's method [H. C. Andersen, J. Chem. Phys. 72, 2384 (1980)] where a piston of unknown mass serves to control the response time of volume fluctuations, the newly proposed equations of motion impose a constant external pressure via the introduction of a shell particle of known mass. Hence, the system itself sets the time scales for pressure and volume fluctuations. The new algorithm is subject to a number of fundamentally rigorous tests to ensure that the equations of motion sample phase space correctly. We also show that the Hoover NpT algorithm [W. G. Hoover, Phys. Rev. A. 31, 1695 (1985); 34, 2499 (1986)] does sample phase correctly, but only when periodic boundary conditions are employed. 相似文献
14.
Naveen Michaud‐Agrawal Elizabeth J. Denning Thomas B. Woolf Oliver Beckstein 《Journal of computational chemistry》2011,32(10):2319-2327
MDAnalysis is an object‐oriented library for structural and temporal analysis of molecular dynamics (MD) simulation trajectories and individual protein structures. It is written in the Python language with some performance‐critical code in C. It uses the powerful NumPy package to expose trajectory data as fast and efficient NumPy arrays. It has been tested on systems of millions of particles. Many common file formats of simulation packages including CHARMM, Gromacs, Amber, and NAMD and the Protein Data Bank format can be read and written. Atoms can be selected with a syntax similar to CHARMM's powerful selection commands. MDAnalysis enables both novice and experienced programmers to rapidly write their own analytical tools and access data stored in trajectories in an easily accessible manner that facilitates interactive explorative analysis. MDAnalysis has been tested on and works for most Unix‐based platforms such as Linux and Mac OS X. It is freely available under the GNU General Public License from http://mdanalysis.googlecode.com . © 2011 Wiley Periodicals, Inc. J Comput Chem 2011 相似文献
15.
《Journal of computational chemistry》2018,39(19):1307-1318
Drug‐binding kinetics could play important roles in determining the efficacy of drugs and has caught the attention of more drug designers. Using the dissociation of 1H‐pyrrolo[2,3‐b]‐pyridines from the focal adhesion kinase as an example, this work finds that steered molecular dynamics simulations could help screen compounds with long‐residence times. It also reveals a two‐step mechanism of ligand dissociation resembling the release of ADP from protein kinase A reported earlier. A phenyl group attaching to the pyrrole prolongs residence time by creating a large activation barrier for transition from the bound to the intermediate state when it becomes exposed to the solvent. Principal component analysis shows that ligand dissociation does not couple with large‐scale collective motions of the protein involving many of its amino acids. Rather, a small subset of amino acids dominates. Some of these amino acids do not contact the ligands directly along the dissociation pathways and could exert long‐range allosteric effects. © 2018 Wiley Periodicals, Inc. 相似文献
16.
The absorption properties of a dye molecule depend on its orientation relative to the light source. Thus the ability to predict how well a particular dye aligns with a liquid crystal host will improve the design of smart materials. One measurement of this alignment is the order parameter, which can be calculated from molecular dynamics simulations. The results for three dyes are presented here. The orientation of the long molecular axis of the dye relative to the liquid crystal director can range from perpendicular to parallel, with the dyes studied having an average order parameter of the dye similar to the average order parameter of the host. 相似文献
17.
Comparison of the accuracy of periodic reaction field methods in molecular dynamics simulations of a model liquid crystal system 下载免费PDF全文
Takuma Nozawa Kazuaki Z. Takahashi Tetsu Narumi Kenji Yasuoka 《Journal of computational chemistry》2015,36(32):2406-2411
A periodic reaction field (PRF) method is a technique to estimate long‐range interactions. The method has the potential to effectively reduce the computational cost while maintaining adequate accuracy. We performed molecular dynamics (MD) simulations of a model liquid‐crystal system to assess the accuracy of some variations of the PRF method in low‐charge‐density systems. All the methods had adequate accuracy compared with the results of the particle mesh Ewald (PME) method, except for a few simulation conditions. Furthermore, in all of the simulation conditions, one of the PRF methods had the same accuracy as the PME method. © 2015 Wiley Periodicals, Inc. 相似文献
18.
Simulated tempering based on global balance or detailed balance conditions: Suwa–Todo,heat bath,and Metropolis algorithms 下载免费PDF全文
Simulated tempering (ST) is a useful method to enhance sampling of molecular simulations. When ST is used, the Metropolis algorithm, which satisfies the detailed balance condition, is usually applied to calculate the transition probability. Recently, an alternative method that satisfies the global balance condition instead of the detailed balance condition has been proposed by Suwa and Todo. In this study, ST method with the Suwa–Todo algorithm is proposed. Molecular dynamics simulations with ST are performed with three algorithms (the Metropolis, heat bath, and Suwa–Todo algorithms) to calculate the transition probability. Among the three algorithms, the Suwa–Todo algorithm yields the highest acceptance ratio and the shortest autocorrelation time. These suggest that sampling by a ST simulation with the Suwa–Todo algorithm is most efficient. In addition, because the acceptance ratio of the Suwa–Todo algorithm is higher than that of the Metropolis algorithm, the number of temperature states can be reduced by 25% for the Suwa–Todo algorithm when compared with the Metropolis algorithm. © 2015 Wiley Periodicals, Inc. 相似文献
19.
利用分子动力学模拟研究了在不同尿素浓度下,核糖核酸酶Sa(RNase Sa)表面水和尿素分子的分布和动力学行为。 结果表明,尿素分子可与RNase Sa酶形成较强的相互作用,并取代其表面的水分子而富集在蛋白质表面。 尿素分子更倾向与RNase Sa酶的疏水残基作用,与RNase Sa酶主链形成氢键的能力更强。 尿素分子的平动和转动远远慢于水分子的平动和转动。 RNase Sa酶表面水分子的平动和转动随着尿素浓度增加而逐渐变慢,但RNase Sa酶表面尿素分子的动力学并不依赖于尿素浓度变化。 本研究中明晰的RNase Sa酶表面水和尿素分子分布和动力学有助于理解水和尿素分子对蛋白质稳定性的影响。 相似文献
20.
Theresa J. Foster Alexander D. MacKerell Jr. Olgun Guvench 《Journal of computational chemistry》2012,33(23):1880-1891
Accounting for target flexibility and selecting “hot spots” most likely to be able to bind an inhibitor continue to be challenges in the field of structure‐based drug design, especially in the case of protein–protein interactions. Computational fragment‐based approaches using molecular dynamics (MD) simulations are a promising emerging technology having the potential to address both of these challenges. However, the optimal MD conditions permitting sufficient target flexibility while also avoiding fragment‐induced target denaturation remain ambiguous. Using one such technology (Site Identification by Ligand Competitive Saturation, SILCS), conditions were identified to either prevent denaturation or identify and exclude trajectories in which subtle but important denaturation was occurring. The target system used was the well‐characterized protein cytokine IL‐2, which is involved in a protein–protein interface and, in its unliganded crystallographic form, lacks surface pockets that can serve as small‐molecule binding sites. Nonetheless, small‐molecule inhibitors have previously been discovered that bind to two “cryptic” binding sites that emerge only in the presence of ligand binding, highlighting the important role of IL‐2 flexibility. Using the above conditions, SILCS with hydrophobic fragments was able to identify both sites based on favorable fragment binding while avoiding IL‐2 denaturation. An important additional finding was that acetonitrile, a water‐miscible fragment, fails to identify either site yet can induce target denaturation, highlighting the importance of fragment choice. © 2012 Wiley Periodicals, Inc. 相似文献