首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The double-T injector design employed in many microchip capillary electrophoresis devices allows for the formation of very small (50-500 pL) sample plugs for subsequent analysis on-chip. In this study, we show that sample plugs formed at the channel junction can be geometrically defined. The channel width and injector symmetry prove to be of great importance to good performance. A unique pushback of solvent into the side channels can be induced when the side channels have a very low resistance to flow, and this helps to better define the injected sample plug. Samples and running buffers of differing ionic strength (e.g., 10 mM KCl buffer and 20 mM KCl sample) can yield widely variable results in terms of plug shape and amount injected (variations of 1.5 to 10x). Applying bias voltages to all the intersecting channels aids in controlling the plug shape. However, when the ionic strengths of buffer and sample are not matched, the actual amount injected (up to 10x variations) can be inconsistent with the appearance of the plug formed in the injector (up to only 30 % variations). Operating at constant pH and ionic strength produced the most consistent results. This report examines the effects of altering the injector geometry and solution ionic strengths, and presents the results of using bias voltages to control plug formation. The observed results should provide a benchmark for modeling of the fluid dynamics in channel intersections.  相似文献   

2.
Chang CL  Hou HH  Fu LM  Tsai CH 《Electrophoresis》2008,29(15):3135-3144
This study develops a crossform CE microfluidic device in which a single-circular barrier or a double-circular barrier is introduced at the cross-channel intersection. Utilizing a conventional crossform injection scheme, it is shown that these barriers reduce sample leakage and deliver a compact sample band into the separation channel, thereby ensuring an enhanced detection performance. A series of numerical and experimental investigations are performed to investigate the effects of the barrier type and the barrier ratio on the flow streamlines within the microchannel and to clarify their respective effects on the sample leakage ratio and sample plug variance during the injection process. The results indicate that a single-circular barrier injector with a barrier ratio greater than 20% and a double-circular barrier injector with a barrier ratio greater than 40% minimize the sample leakage ratio and produce a compact sample plug. As a result, both injectors have an excellent potential for use in high-quality, high-throughput chemical analysis procedures and in many other applications throughout the micro-total analysis systems field.  相似文献   

3.
Hsieh MM  Chang PL  Chang HT 《Electrophoresis》2002,23(15):2388-2393
A partially filling technique for the analysis of DNA markers and polymerase chain reaction (PCR) products by capillary electrophoresis in the presence of electroosmotic flow using polymer solutions is presented. Either after or prior to the sample injection, a plug of salts at high pH was hydrodynamically injected. During the separation, poly(ethylene oxide) (PEO) solution entered the capillary. We have found that the position, length, and composition of the plugs affect the sensitivity, resolution, and speed on the analysis of PhiX-174/HaeIII DNA restriction fragments or a DNA mixture (pBR 322/HaeIII digest, pBR 328/BglI digest and pBR 328/HinfI digest) with different degrees. Through careful evaluation of the impact of anions and cations on the analysis of DNA, we have suggested that the optimal condition is applying a plug consisting of 32 mM NaCl and 0.01 M NaOH at 30 cm height for 60 s after sample injection. In the presence of such a plug, PEO adsorption reduces, and thus the separation is faster, as well as the sensitivity improves. Using this condition, the analysis of a DNA mixture (injected at 30 cm for 360 s) containing ten different PCR products amplified after 17 cycles was complete in 25 min. About a 2000-fold improvement in the sensitivity was achieved when compared to that by a conventional method (10 s injection) without applying a plug.  相似文献   

4.
《Electrophoresis》2017,38(3-4):521-524
Acupuncture sample injection is a simple method to deliver well‐defined nanoliter‐scale sample plugs in PDMS microfluidic channels. This acupuncture injection method in microchip CE has several advantages, including minimization of sample consumption, the capability of serial injections of different sample solutions into the same microchannel, and the capability of injecting sample plugs into any desired position of a microchannel. Herein, we demonstrate that the simple and cost‐effective acupuncture sample injection method can be used for PDMS microchip‐based field amplified sample stacking in the most simplified straight channel by applying a single potential. We achieved the increase in electropherogram signals for the case of sample stacking. Furthermore, we present that microchip CGE of ΦX174 DNA‐HaeⅢ digest can be performed with the acupuncture injection method on a glass microchip while minimizing sample loss and voltage control hardware.  相似文献   

5.
Wu XZ  Zhang LH  Onoda K 《Electrophoresis》2005,26(3):563-570
Carrier ampholyte-free isoelectric focusing (IEF) sample injection (concentration) for capillary electrophoresis (CE) is realized in a single capillary. A short section of porous capillary wall was made near the injection end of a capillary by HF etching. In the etching process, an electric voltage was applied across the etching capillary wall and electric current was monitored. When an electric current through the etching capillary was observed, the capillary wall became porous. The etched part was fixed in a vial, where NaOH solution with a certain concentration was added during the sample injection. The whole capillary was filled with pH 3.0 running buffer. The inlet end vial was filled with protein sample dissolved in the running buffer. An electric voltage was applied across the inlet end vial and etched porous wall. A neutralization reaction occurs at the boundary (interface) of the fronts of H+ and OH-. A pH step or sharp pH gradient exists across the boundary. When positive protein ions electromigrate to the boundary from the sample vial, they are isoelectricelly focused at points corresponding to their pH. After a certain period of concentration, a high voltage is applied across the whole capillary and a conventional CE is followed. An over 100-fold concentration factor has been easily obtained for three model proteins (bovine serum albumin, lysozyme, ribonuclease A). Furthermore, the IEF sample concentration and its dynamics have been visually observed with the whole-column imaging technique. Its merits and remaining problem have been discussed, too.  相似文献   

6.
The influence of the primary structure (base composition) on the electrophoretic migration properties of single-stranded oligodeoxyribonucleotides in capillary polyacrylamide gel electrophoresis was investigated using homo- and heterooligomers under denaturing and non-denaturing conditions. Homooligodeoxyribonucleotides of equal chain lengths but of different base composition showed significant differences in mobility. In addition, the migration properties of heterooligomers were found to be highly dependent on their base composition. A simple equation is presented for predicting relative migration times using denaturing and non-denaturing polyacrylamide capillary gel electrophoresis. Orange-G was used as an internal standard and as the basis of the relative migration time calculations. Examples are presented using homo- and heterooligomers in the 10-20-mer range to show the correlation of the primary structure and their predicted and observed migration rates.  相似文献   

7.
The effects of the sample matrix on the separation of peptides by HPCE has been investigated. Under both acidic and alkaline conditions, use of 25–30 mM salts in the sample zone resulted in much better resolution than did 100 mM salts. Prefocusing effects and acceleration of elution were also observed. These results agree well with the theory developed by Everaerts. In this paper a practical guide for high sensitivity, high resolution separation of salt-containing peptide mixtures is proposed.  相似文献   

8.
A sequential injection micro-sample introduction system was coupled to a microfluidic-chip based capillary electrophoresis system through a split–flow sampling interface integrated on the micro-chip. The microfluidic system measured 20×70×3 mm in dimension, and was produced using a non-lithographic approach with components readily available in the analytical laboratory. In the H-configuration channel design the horizontal separation channel was a 75 μm I.D.×60 mm quartz capillary, with two vertical side arms produced from plastic tubing. The conduits were embedded in silicon elastomer with a planar glass base. Sequential introduction of a series of samples with about 2.5% carryover was achieved at 48 h−1 throughput with samples containing a mixture of fluorescein isothiocyanate (FITC)-labeled amino acids using SI sample volumes of 3.3 μl and carrier flow-rate of 2.0 ml min−1. Baseline separation was achieved for FITC-labeled arginine, phenylalanine, glycine and FITC (laser induced fluorescence detection) in sodium tetraborate buffer (pH 9.2) within 8–80 s, at separation lengths of 25–35 mm and electrical field strengths of 250–1500 V cm−1, with plate heights in the 0.7–3 μm range.  相似文献   

9.
An improvement has been made to couple isoelectric focusing (IEF) sample injection and capillary zone electrophoresis in an untreated fused silica capillary. Electroosmotic flow is efficiently prevented by simply using a rubber block at the outlet end of the capillary during IEF sample injection. The experimental conditions that affect the concentration effect are discussed. A concentration enhancement factor of over 100-fold can be easily obtained for two model proteins: lysozyme and ribonuclease A.  相似文献   

10.
The effect of pH on the electrophoretic migration properties of single-stranded oligodeoxyribonucleotides in capillary gel electrophoresis was investigated. Different homooligodeoxyribonucleotides of equal chain length showed significant differences in relative migration when the pH of the gel buffer was varied from pH 6 to 8, parallel with the running buffer. A similar variation in migration order was observed during the electrophoretic equilibration of a pH 8 gel-filled capillary column with a pH 6 running buffer. In the latter instance, the current reached the new level after 20 min of electrophoretic equilibration with the pH 6 running buffer. However, it was observed that the migration order characteristic of the pH 6 gel was achieved only after 4 h of electrophoretic equilibration. To avoid this time-consuming equilibration process, these results suggest that gel-filled capillary columns should be prepared with the same buffer (composition and pH) that will be used as the running buffer during the separations.  相似文献   

11.
The electrophoretic migration, in routine analysis, is crucial for compound identification especially when multiple components are present in the sample. In complex or crude samples, such as those obtained from biological fluids, electrophoretic migration often does not correspond well to that of a pure standard compound. Several factors, related to the sample itself, have been identified as modulating the electrophoretic migration in zone electrophoresis both in gel and capillary electrophoresis (CE): solute mobility and concentrations, salt content, and protein interaction in the sample. Peak shape asymmetry often signals changes in migration especially when comparing samples with wide differences in concentration or those containing high ionic strength. Also, the migration of a protein can be influenced by the presence of a high concentration of another slowly migrating protein in the sample. A weak interaction during the separation between the two proteins which lead to a decreased velocity has been postulated. This was confirmed by finding a curve-linear relationship between the ratio of the two hemoglobin (Hb) variants, hemoglobin F (Hb F) and hemoglobin S (Hb S), and the distance between the two in gel electrophoresis (GE); and also by the observation of formation of a new small peak based on the analysis of hemoglobin F by capillary electrophoresis upon the addition of Hb S to the separation buffer. These factors when present together have an additive effect on the migration. As an example, Hb F, present in low but variable concentration in patients with sickle cell disease (Hb S), migrates in gel electrophoresis slightly slower than it is expected; enough to be confused with other unknown variants. However, the small peaks with different migration distances between Hb S and the adult Hb (Hb A) correlated well (r = 0.98) with Hb F performed by an alkali-denaturing assay indicating that these peaks are indeed Hb F in spite of the difference in their migration.  相似文献   

12.
13.
Huie CW 《Electrophoresis》2003,24(10):1508-1529
A review of recent developments in theoretical as well as application studies concerning the use of organic solvents, either as purely nonaqueous solvents, hydro-organic mixtures, or a combination of an organic solvent with another organic modifier(s), in the sample matrix and/or separation buffer for effecting sample pretreatment and/or improving separation performances in capillary electrophoresis (CE) is presented. In particular, recent advances made in furthering the basic understanding of selectivity changes that occur in capillary zone electrophoresis due the presence of organic solvents in the separation medium, based on in-depth studies of fundamental processes, such as acid-base chemistry, ion-ion and ion-solvent interactions, were discussed in detail. The utilization of organic solvents for improving the resolution of highly challenging and important separations, i.e., those involving the separation of positional and optical isomers, was also critically reviewed. Furthermore, a comprehensive survey of the use of organic solvents for on-line sample pretreatment, e.g., minimizing aggregation and maximizing solubilization of hydrophobic analytes, improving concentration detection sensitivity for analytes via the use of sample stacking, was presented and discussed. Moreover, recent applications involving the use of organic solvents for improving the CE separations of a variety of molecular species with significance in various disciplines, including biological, environmental and pharmaceutical areas, were summarized and tabulated.  相似文献   

14.
A comparative study was conducted to assess the injection precision in capillary electrophoresis for cationic analytes (arecoline, codeine, papaverine). The precision was measured in respect to methods sensitivity in various injection modes in capillary electrophoresis: standard hydrodynamic injection (3.45 kPa for 6 s), large volume sample stacking (3.45 kPa for 40 s), and field‐amplified sample injection (10 kV for 65 s). All measurements were conducted for aqueous solutions of standards to minimize the errors linked to the sample preparation step. The methods were submitted to precision assessment at three concentration levels: at the limit of quantification, three‐fold and ten‐fold of limit of quantification. The results were compared to those from high‐performance liquid chromatography as a reference technique. The field‐amplified sample injection method was shown to provide greatest sensitivity (quantification limits down to 4 ng/mL for all three tested compounds) but the lowest precision. High‐performance liquid chromatography was established as the most reliable technique (coefficient of variation in all intraday experiments was below 1%). It was also shown that with a use of large volume sample injection technique, similar sensitivity as in high‐performance liquid chromatography can be easily reached.  相似文献   

15.
Solvent-bar microextraction (SBME) based on two-phase (water-to-organic) extraction was for the first time used as the sample pretreatment method for the non-aqueous capillary electrophoresis (NACE) of herbicides of environmental concern. Due to the compatibility of the extractant organic solvent and the NACE separation system, the extract could be introduced directly to the CE system after SBME. Through investigations of the effect of sample pH, extraction time, agitation speed and salt addition on extraction efficiency, the most suitable extraction conditions were determined: sample solution at a pH of 1, without added salt, and stirring at 700 revolutions per minute for 30 min. SBME as applied here was also compared with single-drop microextraction and hollow fiber-protected liquid-phase microextraction. SBME showed the highest extraction efficiency. In addition, field-amplified sample injection with pre-introduced organic solvent plug removal using the electroosmotic flow as a pump (FAEP) was used to enhance the sensitivity further in NACE. Based on studies of the effect of different organic solvents, different lengths of the organic plugs and different volumes of sample injection on stacking efficiency under the most suitable separation conditions, methanol was found to be the most efficient solvent for on-line preconcentration. Combined with SBME, FAEP-NACE achieved limits of detection of between 0.08 ng/mL and 0.14 ng/mL for the studied analytes. This preconcentration approach for NACE was demonstrated to be amenable to aqueous environmental samples by applying it to spiked river water.  相似文献   

16.
A microchip-based capillary electrophoresis device supported by a microfluidic network made of poly(dimethylsiloxane), used for measuring target analytes from a continuous sample flow, is presented. The microsystem was fabricated by means of replica molding in combination with standard microfabrication technologies, resulting in microfluidic components and an electrochemical detector. A new hydrodynamic sample injection procedure is introduced, and the maximum number of consecutive measurements that can be made with a poly(dimethylsiloxane) capillary electrophoresis chip with amperometric detection is investigated with respect to reproducibility. The device features a high degree of functional integration, so the benefits associated with miniaturized analysis systems apply to it.  相似文献   

17.
A multi-T microchip for integrated field amplified sample stacking (FASS) with CE separation to increase the chip-based capillary electrophoresis (chip-based CE) sensitivity was developed. Volumetrically defined large sample plug was formed in one step within 5s by the negative pressure in headspace of the two sealed sample waste reservoirs produced using a syringe pump equipped with a 3-way valve. Stacking and separation can proceed only by switching the 3-way valve to release the vacuum in headspace of the two sample waste reservoirs. This approach considerably simplified the operations and the equipments for FASS in chip-based CE systems. Migration time precisions of 3.3% and 1.3% RSD for rhodamine123 (Rh123) and fluorescien sodium salt (Flu) in the separation of a mixture of Flu and Rh123 were obtained for nine consecutive determinations with peak height precisions of 4.8% and 3.4% RSD, respectively. Compared with the chip-based CE on the cross microchip, the sensitivity for analysis of FlTC, FITC-labeled valine (Val) and Alanine (Ala) increased 55-, 41- and 43-fold, respectively.  相似文献   

18.
Zhan W  Wang T  Li SF 《Electrophoresis》2000,21(3):573-578
This paper reports a strategy to couple liquid-liquid semimicroextraction (LLsME) with capillary electrophoresis (CE) based on a newly introduced on-column decomposable sample matrix, ethyl acetate (EA). LLsME was performed in volumetric flasks of 100 mL. Samples containing an aqueous phase were first saturated with EA. Then, an extra 500 microL of EA was added to extract the samples. Sample injection in CE could be made in hydrodynamic mode by dipping the injection end of the capillary into the organic (EA) phase in the volumetric flasks. As a demonstration, alkylphenones in water samples were extracted by LLsME into EA and subjected to separation by micellar electrokinetic chromatography (MEKC). Alkylphenones of C8-C12 with concentrations of about 10 ppb can be concentrated and detected after extraction; extraction efficiencies range from 72- to 334-fold. Linearity of extraction was determined and the effect on reproducibility by spiking an internal standard was studied. The method developed is time-saving and requires no further special experimental device other than a basic CE setup. Therefore, it would be readily acceptable for routine analysis, especially in analytical laboratories dealing with environmental samples.  相似文献   

19.
A simple and sensitive method has been developed for the determination of chloroacetic acids and acetic acid in water using capillary zone electrophoresis under modified electroosmotic flow with indirect UV detection. Potassium hydrogen phthalate at pH 5.40 was used as background electrolyte (BGE), and hexadecyltrimethylammonium bromide was used as electroosmotic flow modifier. Field-amplified sample injection (FASI) method was used to enhance the sensitivity. Results showed that the limit of detection for these analytes was enhanced more than 15-fold and the repeatabilities were good with relative standard deviations (RSDs %) of migration time and corrected peak areas being below 0.33%, 4.45% (intra-day) and 0.87%, 9.67% (inter-day), respectively. An off-line liquid–liquid extraction (LLE) process with methyl tert-butyl ether was carried out to detect these compounds in water samples. The dissociation constants of acetic acid and monochloroacetic acid (MCA) were determined with two methods and the results obtained were consistent with the reference values.  相似文献   

20.
We present sequential CE analysis of amino acids and l ‐asparaginase‐catalyzed enzyme reaction, by combing the on‐line derivatization, optically gated (OG) injection and commercial‐available UV‐Vis detection. Various experimental conditions for sequential OG‐UV/vis CE analysis were investigated and optimized by analyzing a standard mixture of amino acids. High reproducibility of the sequential CE analysis was demonstrated with RSD values (n = 20) of 2.23, 2.57, and 0.70% for peak heights, peak areas, and migration times, respectively, and the LOD of 5.0 μM (for asparagine) and 2.0 μM (for aspartic acid) were obtained. With the application of the OG‐UV/vis CE analysis, sequential online CE enzyme assay of l ‐asparaginase‐catalyzed enzyme reaction was carried out by automatically and continuously monitoring the substrate consumption and the product formation every 12 s from the beginning to the end of the reaction. The Michaelis constants for the reaction were obtained and were found to be in good agreement with the results of traditional off‐line enzyme assays. The study demonstrated the feasibility and reliability of integrating the OG injection with UV/vis detection for sequential online CE analysis, which could be of potential value for online monitoring various chemical reaction and bioprocesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号