首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excised roots of pea seedlings (Pisum sativum var. “Alaska”) cultured in a synthetic medium under sterile conditions exhibit differentiation of functional chloroplasts from leucoplasts when irradiated with blue light (350–550 nm). This transition is a relatively slow process; nevertheless, the chloroplasts formed in blue light compare very well to leaf chloroplasts as far as microstructure and photosyn-thetic activities are concerned. Apparently certain activities of the apical meristem are mandatory in bringing about a transition from leucoplasts to chloroplasts in blue light. After short-time labelling with [jH]uridine the synthesis of plastid ribosomal RNA (rRNA) was studied either during irradiation with blue and red light (600–700 nm), respectively, or in darkness. Polyacrylamide gel electrophoresis revealed that in blue light the synthesis of specific chloroplast rRNA species with molecular weights of 1.1 × 106 and 0.56 × 106 daltons is markedly stimulated. In contrast, in dark cultured roots these RNA species were synthesized to a limited extent only whereas the cytoplasmic rRNA species of 1.3 × 106 and 0.7 × 106 daltons molecular weight were preferentially formed. The same holds true for roots irradiated with red light.  相似文献   

2.
Chlorophyll synthesis is stimulated by red light pulses in the green alga Ulva rigida C. Aghard. Chlorophyll synthesis in darkness is greater after longer red light pulses (30 min) than after shorter red light pulses (5 min). Chlorophyll synthesis was higher after red light pulses of 14 Wm-2 fluence rate than after those of 7 Wm-2. The effect of red light showed some far-red reversibility. The reversion by far-red light was higher after red light pulses of 4 min than after those of 30 min. These results indicate the existence of a rapid induction of chlorophyll synthesis during the red light pulses and a fast escape from photoreversibility. The percentage of reversion is also affected by the fluence rate of the light pulses. The reversion was reduced by about 15% when the photon fluence rate was increased from 7 to 14 Wm-2. Reversion was also observed when red and far-red light pulses were applied successively. Thus, phytochrome or a phytochrome-like photoreceptor could be involved in the induction of chlorophyll synthesis in Ulva rigida.  相似文献   

3.
Abstract— The action spectra for violaxanthin de-epoxidation and zeaxanthin epoxidation in New Zealand spinach leaf segments, Tetragonia expansa, were determined at equal incident quanta of 2·0 × 1015 quanta cm-2 sec-1. Precise action spectra were not obtained due to variable leaf activity. The de-epoxidation action spectrum had major peaks at approximately 480 and 648 nm. Blue light was slightly more effective than red light and little activity was observed beyond 700 nm. The epoxidation action spectrum showed major peaks at around 440 and 670 nm. Blue light was more effective than red light and light beyond 700 nm showed definite activity. The net result of de-epoxidation and epoxidation is a cyclic scheme, the violaxanthin cycle, which consumes O2 and photoproducts. The action spectra indicate that the violaxanthin cycle is more active in blue than in red light and therefore could account for O2 uptake stimulated by blue light. However, the violaxanthin cycle is not the pathway for O2 uptake by photosynthetic system 1. It was suggested that the violaxanthin cycle may function as a pathway for the consumption of excess photoproducts generated in blue light or the conversion of these photo-products to other forms of energy.  相似文献   

4.
The accumulation of phytochrome in the dark was measured for Avena sativa seedlings after a white light pretreatment and for Sorghum vulgare seedlings after continuous red or far-red light treatments, using the herbicide Norflurazon to prevent greening under continuous irradiation. In both cases the accumulation of phytochrome depends on the state of the phytochrome at the light-dark transition: high Pfr levels (red light pulse) led to a slower rate of phytochrome accumulation than lower Pfr levels (long wavelength far-red (RG 9) light pulse). Poly-(A+)-RNA was isolated fromA. sativa seedlings grown for 48 h in darkness + 24 h WL + light pulse (5 min) (red, RG 9 light, red followed by RG 9 light or RG 9 followed by red light pulse) + 19 h darkness. The poly-(A+)-RNA was translated in a rabbit reticulocyte lysate system and the translation products were immunoprecipitated by specific anti-phytochrome antibodies. It was demonstrated that the activity of mRNA coding for phytochrome was under phytochrome control.  相似文献   

5.
Abstract —Anthocyanin synthesis in cabbage and mustard seedlings depends upon duration and irradiance of the light treatment. The relative effectiveness of radiation in various spectral regions depends upon the length of the irradiation and decreases with increasing dose. In intermittent light treatments, far-red light can reverse the promoting action of red light if the dark interval between successive irradiations is longer than one hour. If the length of the dark interval is less than one hour, far-red applied immediately after each red irradiation, enhances anthocyanin accumulation. Anthocyanin accumulation under various light treatments seems to correlate, to some extent, with the rate of phytochrome decay, but not with chlorophyll production. Anthocyanin accumulation is inhibited by 2,4-dinitrophenol and by the ammonium ion, but not by DCMU. The ammonium ion inhibits anthocyanin accumulation induced by a single, short red irradiation. This suggest that the ammonium ion may have a wider spectrum of action in vivo than in chloroplast preparations where it acts as a specific uncoupler of photophosphorylation. Streptomycin inhibits chlorophyll synthesis and enhances anthocyanin accumulation. These results suggest that there is very little, if any, interaction between photosynthesis and ‘high-irradiance-reaction’ anthocyanin synthesis in cabbage and mustard seedlings.  相似文献   

6.
7.
Abstract— Face-to-profile chloroplast movement in Mougeotia was induced by sequences of strong blue and red short irradiations. This type of response occured only when blue light was applied prior to or simultaneously with red light, and far-red irradiation was necessary after the sequence to cancel the remaining gradient of the far-red absorbing form of phytochrome Pfr. The dependence of the response magnitude on blue and red light sequences was studied for a wide range of light durations and dark intervals. The relationship between the response and the dark interval points to the lack of direct coupling between phytochrome and blue-absorbing “cryptochrome”. It was postulated that a photoproduct having a life-time of2–3 min is formed by the blue-light-mediated reaction. This photoproduct interacts with phytochrome during its transformation or with its final Pfr form.  相似文献   

8.
9.
Abstract— The effect of wave-length of light on leaf expansion in Tropaeolum majus 'Double Orange Gleam' and Pisurn sativum 'Meteor' has been studied. In both species leaf growth is strongly promoted by light.
Increasing the daily duration of exposure to light increased leaf expansion in Tropueolum in both blue and red wave-bands over a range of light intensities. In Pisum a similar effect of ail increase in duration of irradiation was found over the whole range of intensities used for blue light but only at the highest intensity for red light: at the two lower intensities in red an increase in duration of the light treatment beyond 1 hr did not increase leaf expansion.
In both species a period of 4 hr of blue followed by 4 hr of red promoted leaf growth more than 4 hr of red followed by 4 hr of blue. The effect of a 4 hr period of red light was largely prevented when it was followed by far-red; the effect of 4 hr of blue light, on the other hand, was not affected by subsequent exposure to far-red.
It is concluded that leaf growth in Pisum and Tropaeolum is dependent not only on the 'low-energy' red/far-red reversible reaction but also on one or more 'high-enerFy' photo-reactions.  相似文献   

10.
Two new orange red light‐emitting hyperbranched and linear polymers, poly(pyridine phenylene)s P1 and P2, were prepared by the Heck coupling reaction. In particular, an A2 + B3 approach was developed to synthesize conjugated hyperbranched polymer P2 via one‐pot polycondensation. The polymers were characterized by NMR, Fourier transform infrared, ultraviolet–visible, and elemental analysis. They showed excellent solubility in common solvents such as tetrahydrofuran, CH2Cl2, CHCl3, and N,N‐dimethylformamide and had high molecular weights (up to 6.1 × 105 and 5.8 × 105). Cyclic voltammetry studies revealed that P2 had a low‐lying lowest unoccupied molecular orbital energy level of ?3.22 eV and a highest occupied molecular orbital energy level of ?5.43 eV. The thin film of P2 emitted strong orange‐red photoluminescence at 595 nm. A double‐layer light‐emitting diode fabricated with the configuration of indium tin oxide/P2/tris(8‐hydroxy‐quinoline)aluminum/Al emitted orange‐red light at 599 nm, with a brightness of 662 cd/m2 at 7 V and a turn‐on voltage of 4.0 V; its external quantum efficiency was calculated to be 0.19% at 130.61 mA/cm2. This indicated that this new electroluminescent polymer (P2) based on 3,5‐dicyano‐2,4,6‐tristyrylpyridine could possibly be used as an orange‐red emitter in polymer light‐emitting displays. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 493–504, 2005  相似文献   

11.
REGULATION OF CHLOROPLAST DEVELOPMENT BY RED AND BLUE LIGHT   总被引:3,自引:0,他引:3  
There are specific differences between red and blue light greening of etiolated seedlings of Hordevm vulgare L. Blue light results in a different prenyl lipid composition of chloroplast as compared to red light of equal quanta density. This is documented by a much higher prenylquinone content, higher chlorophyll a/b ratios, and lower values for the ratio xanthophylls to carotenes (x/c). The photosynthetic activity of “blue light” chloroplasts (Hill reaction) is higher than that of “red light” chloroplasts. These differences in prenylquinone composition and Hill-activity are associated with a different ultrastructure of chloroplasts. “Red light” chloroplasts exhibit a much higher grana content than “blue light” chloroplasts. The difference in thylakoid composition, photosynthetic activity and chloroplast structure found between blue and red light greening are similar to those found between sun and shade leaves and those between plants grown under high and low light intensities.  相似文献   

12.
In the mustard seedling cotyledons, chlorophyll b appears from the very beginning in white light provided that a red light pulse pretreatment was given 12 h prior to the onset of white light. The red light pulses act through phytochrome. Without pretreatment no chlorophyll b is detectable at least during the first 60 min after the onset of white light (25°C). Biogenesis of chlorophyll b specifically depends on the action of phytochrome during the pre-steady state period as well as during the steady state period of chlorophyll accumulation. In light pulse experiments, it was found that formation of chlorophyll b takes place stoichiometrically at the cost of chlorophyll(ide) a.  相似文献   

13.
The effects of light on arsenic accumulation of Thraustochytrium CHN‐1 were investigated. Thraustochytrium CHN‐1, when exposed to blue light from light‐emitting diodes (LEDs), accumulated arsenate added to its growth medium to a much greater extent than Thraustochytrium cells exposed to fluorescent or red light, or when cultured in the dark. Arsenic compounds in Thraustochytrium CHN‐1 were analyzed by high‐performance liquid chromatography, with an inductively coupled plasma mass spectrometer serving as an arsenic‐specific detector. Arsenate, arsenite, monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA) and arsenosugar were identified. The order of arsenic species in Thraustochytrium CHN‐1 was arsenic(V)> arsenic(III)> MMAA > DMAA at an arsenic concentration of 10 mg dm?3 in the medium in blue LED light. As it is known that blue light induces the synthesis of certain metabolites in plants and microorganisms, this indicates that the accumulation of arsenic is an active metabolic process. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Negatively charged vesicle suspensions containing chlorophyll a (chl) dissolved in the lipid bilayer, flavin mononucleotide (FMN) and/or ethylenediaminetetraacetic acid (EDTA) enclosed in the inner compartment as electron sources and oxidized cytochrome c (cyt c[ox]) in the outer compartment as an electron acceptor have been studied using laser flash photolysis and steady-state irradiation methods. Cytochrome c initially quenches the chl triplet state (3chl) generating the chlorophyll cation radical (chi+′) in the membrane. Reverse electron transfer from cyt c(red) to chl+. subsequently occurs in a kinetically biphasic reaction, with rate constants of 430 pT 30 and 21.9 pT 1.7 s?1 for the fast and slow phases, respectively. In the absence of FMN, reduction of chl+′ by EDTA in the inner compartment can be observed during steady-state irradiation but not in a laser flash photolysis experiment. This is due to a low reaction yield, which is probably limited by the repulsive electrostatic interaction between EDTA and the negatively charged membrane. When FMN was enclosed together with EDTA in the inner Compartment, the reaction yield of vectorial electron transfer across the bilayer from EDTA to cyt c(oX) was increased by a factor of six during steadystate white light irradiation. Laser flash photolysis and steady-state irradiation experiments using red and blue light excitation have demonstrated that the enhancement mechanism involves the formation of fully reduced FMN by blue light-sensitized photooxidation of EDTA via the flavin triplet state, occumng simultaneously with red lightsensitized electron transfer to cyt c via the chlorophyll triplet state.  相似文献   

15.
Abstract— Leaf waxes are important to plant growth because they impede water loss and may influence entry of light. Leaf wax quantity and composition were studied in Capsicum annuum plants in trickle-irrigated field plots covered with white, black or red plastic mulches. The quantity of reflected blue light (BL) was greatest over white and about the same over black versus red surfaces; and reflected far-red to red ratios (FR/R) were about the same over white versus black and higher over red. The greatest quantity of total epicuticular wax developed on leaves of plants grown over white mulch (443 μg/cm2) while plants grown over black and red mulches had 229 and 227 μg/cm2, respectively. When individual lipid classes were expressed as percentages of the totals, esters constituted the highest percentages over white and black surfaces while secondary free fatty alcohols dominated over red. The higher ester content of epicuticular wax on plants grown over black (versus red) was almost exactly equalled by increased contents of free fatty alcohols and free fatty acids in the epicuticular wax of plants grown over red mulch. We conclude that the total wax concentration on leaves of field-grown plants was influenced by quantity of BL, and the percentage of individual components was influenced by the FR/R ratio.  相似文献   

16.
The inhibitory effect of the dye ruthenium red was studied in photosystem II-enriched submembrane fractions. A number of distinct types of interaction were found, which differed in their concentration range and required incubation time. Ruthenium red instantaneously quenches the initial chlorophyll a fluorescence level (F0) and the maximum fluorescence level (Fm) by enhancing radiationless deactivation in the chlorophyll light harvesting complex. Associated with this quenching of fluorescence is an instantaneous decrease in the quantum yield of oxygen evolution. Ruthenium red also inhibited the light saturated rate of oxygen evolution and the variable fluorescence, monitored 80 µs after a saturating excitation-flash. These inhibitions increased with incubation time and became greater than 50% within 5 min. Although ruthenium red was known to affect Ca2+ or Cl? sites specifically, the inhibitory action was more pronounced than simple Ca2+ or Cl? depletion. Incubation with ruthenium red for 5 min blocks the Z P680+ → Z+ P680 charge transfer reaction. Upon mixing with the photosystem II preparation, ruthenium red induced specific release of the extrinsic 16 kDa polypeptide associated with water-splitting without release of Mn. It is proposed that the inhibitor produces an ionic imbalance which alters the configuration of the donor side of photosystem II.  相似文献   

17.
Elongation and endomitosis were studied in the epicotyl cortex cells of germinating seeds of Pisum sativum cv. Rondo. One min of red light per 24 h is sufficient to fully inhibit endomitosis. Terminal far-red irradiation can reverse the red effect to the level established by far-red light alone. This justifies the conclusion that phytochrome is involved in the regulation of endomitotic DNA replication. Since far-red light alone inhibits endomitosis to about 50%, we conclude that very low levels of Pfr are required to influence the endomitotic cycle.  相似文献   

18.
Gas exchange techniques were employed to study responses of stomatal conductance to pulses of red and blue light in the grass, Zea mays. Zea mays exhibited conductance increases following brief (< 1 min) pulses of either red or blue light, in contrast to other species (e.g. Commelina communis; Assmann, 1988, Plant Physiol. 87 , 226–231) that exhibit consistent conductance responses only to pulses of blue light. Red light pulses of 450 μmol m?2s?1 for x min or 225 μmol m?2s?1 for 2x min were used to probe the fluence dependence of the red light response. The red light-stimulated conductance increase was constant for a given fluence, and increased with increasing total fluence. The conductance response to red light was larger in field grown plants (maximum growth irradiance ? 1600 μmol m-2s?l) than in plants raised in growth chambers (maximum growth irradiance ? 150 μmol m?2s?1).  相似文献   

19.
The kinetics of 35S methionine incorporation into soluble and membrane proteins during the transition from steady state dark growth to greening was studied in Spirodela. A sharp increase in the rate of incorporation occurred at 3 h, which was several h before major increases in chlorophyll were apparent. Part of this enhanced incorporation was due to enhanced synthesis of a 32 ,000 dalton membrane protein. This synthesis was paralleled by a temporal increase in in uitro template capacity for this protein and an increase in 0.5 × 106 dalton plastid messenger RNA.  相似文献   

20.
Abstract— Experiments with irradiation sequences where red precedes far-red lead to the conclusion that, in turnip, phytochrome is the only pigment mediating anthocyanin synthesis in red and far-red. Results from experiments where far-red precedes red, however, suggest that more than one reaction is involved. A possible interpretation is that the 'high-energy' reaction in far-red and the low energy red/far-red reversible reaction are mediated by two different forms of phytochrome.
The 'high-energy' reaction in blue light does not appear to depend on phytochrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号