首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We describe a model for the dynamic interaction of a sphere with uniform density and a system of coaxial circular vortex rings in an ideal fluid of equal density. At regular intervals in time, a constraint is imposed that requires the velocity of the fluid relative to the sphere to have no component transverse to a particular circular contour on the sphere. In order to enforce this constraint, new vortex rings are introduced in a manner that conserves the total momentum in the system. This models the shedding of rings from a sharp physical ridge on the sphere coincident with the circular contour. If the position of the contour is fixed on the sphere, vortex shedding is a source of drag. If the position of the contour varies periodically, propulsive rings may be shed in a manner that mimics the locomotion of certain jellyfish. We present simulations representing both cases.  相似文献   

2.
本文研究了圆球在半无穷长圆管入口处的蠕动流。得到了速度分布,压力分布和流函数的无穷级数形式的分析解.采用配置法将无穷级数截断并确定出级数中各项系数.求出了均匀入口流绕静止圆球以及圆球以瞬时速度在管内静止流体中运动这两种情形下圆球的阻力系数以及圆球表面上的应力分布.结果表明,当圆球在入口处运动时会遭受到较无穷圆管内为大的阻力.本文还对配置法的收敛性进行了数值实验.试验证明,该法具有好的收敛性.  相似文献   

3.
The motion of a homogeneous sphere on a rough horizontal plane when the angular velocities of the twisting and spinning of the sphere are equal to zero at the initial instant is considered. It is proved that, for any initial conditions, the angular velocity of the rolling of the sphere and the sliding velocity vanish after the same finite time. It is shown that the sliding and rolling are interconnected and, in particular, that the rolling of a sphere without sliding is impossible.  相似文献   

4.
We present a three-dimensional solution of a sphere nearby an infinite cylinder at low Reynolds number. We utilize the Lamb’s general solution based on spherical harmonics and develop a framework based on cylindrical harmonics to solve the flow field around the sphere and outside the cylinder, respectively. The solution is solved semi-analytically by considering geometrical parameters, including sphere radius, sphere velocity, separation distance and cylinder radius. The drag force coefficients of the sphere which are dependent on the distance between the cylinder surface and the sphere, as well as the velocity contours in the vicinity of the sphere, are analyzed. We also provide an analytical formula to calculate the drag force. The analytical formula has good quantitative agreement with the semi-analytical solution when the radius of the cylinder is smaller than the sphere. Such analysis can give insights into the details of the complex interaction between the sphere and cylinder.  相似文献   

5.
Consider the problem of rolling a dynamically asymmetric balanced ball (the Chaplygin ball) over a sphere. Suppose that the contact point has zero velocity and the projection of the angular velocity to the normal vector of the sphere equals zero. This model of rolling differs from the classical one. It can be realized, in some approximation, if the ball is rubber coated and the sphere is absolutely rough. Recently, J. Koiller and K. Ehlers pointed out the measure and the Hamiltonian structure for this problem. Using this structure we construct an isomorphism between this problem and the problem of the motion of a point on a sphere in some potential field. The integrable cases are found.   相似文献   

6.
A general method to discuss the problem of an arbitrary Stokes flow (both axisymmetric and non-axisymmetric flows) of a viscous, incompressible fluid past a sphere with a thin coating of a fluid of a different viscosity is considered. We derive the expressions for the drag and torque experienced by the fluid coated sphere and also discuss the conditions for the reduction of the drag on the fluid coated sphere. In fact, we show that the drag reduces compared to the drag on a rigid sphere of the same radius when the unperturbed velocity is either harmonic or purely biharmonic, i.e., of the form ${r^2\vec{\textbf{v}}}$ , where ${\vec{\textbf{v}}}$ is a harmonic function. Previously Johnson (J Fluid Mech 110:217–238, 1981), who considered a uniform flow showed that the drag on the fluid coated sphere reduces compared to the drag on the uncoated sphere when the ratio of the surrounding fluid viscosity to the fluid-film viscosity is greater than 4. We show that this result is true when the undisturbed velocity is harmonic or purely biharmonic, uniform flow being a special case of the former. However, we illustrate by an example that the drag may increase in a general Stokes flow even if this ratio is greater than 4. Moreover, when the unperturbed velocity is harmonic or purely biharmonic, and the ratio of the surrounding fluid viscosity to the fluid-film viscosity is greater than 4 for a fixed value of the viscosity of the ambient fluid, we determine the thickness of the coating for which the drag is minimum.  相似文献   

7.
We study the unsteady rotary motion of a sphere immersed in a Stokes fluid. The equation of motion for the sphere leads to an integro-differential equation, and we are interested in the asymptotic behavior in time of the solution. Preparing initially the system (sphere + fluid) as a stationary state, we prove that the angular velocity of the sphere slows down with a law t −3/2 if no other forces than the one exerted by the fluid act on the sphere, while if the sphere is subject also to an elastic torque the asymptotic behavior of the angular position of the sphere is t γ , with γ = 5/2 if the initial angular velocity is zero, γ = 3/2 otherwise. This behavior is due to the memory effect of the surrounding fluid. We discuss briefly other initial preparations of the system.  相似文献   

8.
The problem of a general non-axisymmetric Stokes flow of a viscous fluid past a porous sphere is considered. The expressions for the velocity and pressure, both inside and outside the sphere are given, when the flow outside satisfies the Stokes equations and the flow inside the sphere is governed by Darcy's law. The expressions for drag and torque are given. It is found that the drag is greater or smaller than the drag in the rigid case, depending on whether the undisturbed velocity is a pure biharmonic or a harmonic respectively. The torque is same as in the rigid case.  相似文献   

9.
The method of matched asymptotic expansions is employed forinvestigating the growth of the boundary layer on a sphere whichis impulsively started from rest in an incompressible viscousfluid of infinite extent. The sphere is supposed to move alongthe direction of a diameter with constant linear velocity andat the same time to rotate about this diameter with constantangular velocity. It is assumed that the Reynolds number islarge and the time of investigation is short. It is shown thatthe solution of the problem contains terms which are absentfrom the solution based on the boundary layer approximation.These additional terms depend on the Reynolds number, and delayflow separation.  相似文献   

10.
对于圆球在粗糙水平面上的运动,在文[1]中,作者忽略了章动,得到了近似解析解。本文在此基础上给出了有章动情况下的控制方程。通过求解这些方程,证明文[1]关于接触点速度的结论在有章动时仍然正确。还得到其它一些有趣的结果,例如:球心和接触点的速度与球的自转角速度和章动角速度有一定联系;球心和接触点的速度的方向具有不变性。在进一步假设微弱章动的情况下,文中得到近似解析解,从而证明文[1]结果的正确性。  相似文献   

11.
Stokes’ and Seth’s solutions for the slow motion of a sphere in a viscous, incompressible liquid have been discussed from the viewpoint of the structure of the velocity field and its relation to the drag of the sphere. The problem is analysed from a different angle in this paper. It is believed that it throws more light on thephysics of the problem.  相似文献   

12.
The motion of a heavy sphere on a fixed horizontal plane is considered. It is assumed that the centre of mass of the sphere is at its geometric centre, while the principal central moments are different (Chaplygin's sphere). Using the method of averaging, the motion of the sphere is investigated under slip conditions when there is low viscous and also low dry friction. It is shown that when the sphere moves with viscous friction it tends, for the majority of initial data, to rotate about the longest of the axes of the principal central moments of inertia. The motion of the sphere centre tends to become uniform so that the slip velocity approaches zero exponentially. A system of averaged equations, which is fully integrable, is obtained in the case of almost equal moments of inertia, when the friction is dry. The solutions are analyzed.  相似文献   

13.
The paper examines the slow motion of a micropolar fluid produced by the relative motion of a solid sphere to an inside porous sphere. The result extends the Cunningham’s problem to micropolar fluid when the inner sphere is porous with prescribed radial suction/injection velocity at the surface of the sphere. The result can also be taken as an extension of the work of Ramkissoon and Majumdar when the fluid is bounded at a radiusr=b (b>a) but the solid sphere is replaced by a porous sphere. The force experienced by the inner sphere has been calculated and particular cases of interest have been deduced.  相似文献   

14.
Stefan Scheichl 《PAMM》2017,17(1):665-666
Analytical expressions have been derived which predict, to lowest order, the inertial lift and the lateral migration velocity of a rigid sphere translating and rotating in a linear shear flow field near the flat interface of two immiscible fluids. This asymptotic analysis is primarily based on the assumption that the two Reynolds numbers defined by the gap width between the interface and the sphere, the shear rate and the translational slip velocity with which the spherical particle moves parallel to the interface are small. Furthermore, the radius of the sphere is assumed to be small compared to the gap width. To leading order in this creeping flow regime, the linear Stokes equations are obtained and a symmetry argument can be used to show that the Stokes solution does not predict any lift force. The transverse force experienced by the sphere and its migration velocity are due to the small but finite inertial terms in the Navier-Stokes equations, which can be studied by perturbation techniques. By applying a Green's function approach and matched asymptotic methods, which also incorporate the effects of the outer Oseen-like flow regime, the three components comprising the lift velocity have been calculated in closed form: the one induced by the shear rate only, the purely slip induced one and the one due to the interaction of the slip velocity with the shear flow field. The thus obtained expressions for the case of two immiscible fluids with arbitrary density and viscosity ratios extend the results that already exist in the literature for other flow configurations, such as an unbounded shear flow field [1] or a wall-bounded one, where the wall lies either within the leading order Stokes region [2] or in the outer Oseen region [3]. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The effects of dissociation or ionization of air on the analytical solution for hypersonic flow past a sphere are considered here, under certain assumptions. It has been assumed that the shock wave is in the shape of a sphere, that the density ratio across the shock is constant, that the flow behind the shock is at constant density and that dissociation or ionization only occurs behind the shock wave. Thus the effects of the compressibility of the air, variation of density ratio along the shock, and the department of the shock shape from being circular are not taken into account. Here the velocity, pressure, temperature, pressure coefficient and vorticity, etc., at any point between the shock and the surface of the sphere in the presence of dissociation or ionization are obtained. In addition, shock detachment distance, drag coefficient, stagnation point velocity gradient and sonic points on the shock and the surface have also been obtained. The results have been compared with the corresponding results obtained in the case when dissociation or ionization does not occur behind the shock.  相似文献   

16.
A spherical cavity in a sphere-shaped gyrostat contains a spherical rotor, which is rotating at a constant angular velocity relative to the outer sphere. The centres of the outer sphere, the cavity and the rotor coincide. Attached to the outer sphere are identical point masses, placed at the vertices of an octahedron. A study is presented of the influence of the rotation of the rotor on the existence and stability of steady motions of the gyrostat about its mass centre in the Newtonian field of a fixed attracting centre. Interest centres on motions in which the radius vector of the gyrostat centre and the gyrostatic moment are collinear. It is shown that the existence of a gyrostatic moment may essentially modify the stability properties of the steady motions discovered.  相似文献   

17.
The solution of the linear steady problem of the flow of an inviscid, incompressible and infinitely deep liquid around a sphere under an ice sheet, which is modelled by a thin elastic stressed plate of constant thickness is constructed. Special cases of this problem are the motion of a submerged sphere under broken ice, a membrane, and also under the free surface both in the presence and absence of capillary effects. The method of multipole expansions is used in the framework of the linear potential wave theory. The hydrodynamic loads (the wave drag and the buoyancy) acting on the body and also the distribution of the deflections of the ice sheet are calculated as a function of the body velocity, the ice thickness and the value of the compressing or stretching forces. It is shown that all the flow characteristics depend considerably on the ratio of the body velocity and the critical velocity of flexural-gravitational waves.  相似文献   

18.
In this paper the temperature and thermal stresses set up in an elastic sphere due to a point source at a finite distance from the centre of the sphere and outside it, have been studied. The final results are obtained in terms of series involving Legendre polynomials. The nature of the stress and temperature distributions have been studied for two different distances of the point source from the centre of the sphere Numerical calculations done on an IBM 1620 Computer have been represented in graphs.  相似文献   

19.
This paper presents an investigation into turbulent film condensation on a sphere with variable wall temperature. Under the wide range of vapor velocity, the wall temperature and the local film shear stress were considered. The result shows that under the high velocity vapor, the increase of the temperature amplitude will bring out a larger Nusselt number, and the increase is about 2.7–5.6%. Besides, under the effect of the local film shear stress, the mean Nusselt number will decrease about 0.65–0.8%. Furthermore, the paper then discusses the influence of shears and temperature amplitudes on the local dimensionless film thickness and heat transfer characteristics. Finally, the results developed in the current study are compared with those generated by previous theoretical results.  相似文献   

20.
The Stokes axisymmetrical flow caused by a sphere translating in a micropolar fluid perpendicular to a plane wall at an arbitrary position from the wall is presented using a combined analytical-numerical method. A linear slip, Basset type, boundary condition on the surface of the sphere has been used. To solve the Stokes equations for the fluid velocity field and the microrotation vector, a general solution is constructed from fundamental solutions in both cylindrical, and spherical coordinate systems. Boundary conditions are satisfied first at the plane wall by the Fourier transforms and then on the sphere surface by the collocation method. The drag acting on the sphere is evaluated with good convergence. Numerical results for the hydrodynamic drag force and wall effect with respect to the micropolarity, slip parameters and the separation distance parameter between the sphere and the wall are presented both in tabular and graphical forms. Comparisons are made between the classical fluid and micropolar fluid.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号