首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The importance of spin density [N(H)] and spin-lattice (T1) and spin-spin (T2) relaxation in the characterization of tissue by nuclear magnetic resonance (NMR) is clearly recognized. This work considers which optimized pulse sequences provide the best tissue discrimination between a given pair of tissues. The effects of tissue spin density and machine-imposed minimum rephasing echo times (TEMIN) for achieving maximum signal tissue contrast are discussed. A long TEMIN sacrifices T1-dependent contrast in saturation recovery (SR) and inversion recovery (IR) pulse sequences so that spin-echo (SE) becomes the optimum sequence to provide tissue contrast, due to T2 relaxation. Pulse sequences providing superior performance may be selected based on spin density and T1 and T2 ratios for a given pair of tissues. Selection of the preferred pulse sequence and interpulse delay times to produce maximum tissue contrast is strongly dependent on knowledge of tissue spin densities as well as T1 and T2 characteristics. As the spin density ratio increases, IR replaces SR as the preferred sequence and SE replaces IR and SR as the pulse sequence providing superior contrast. To select the optimal pulse sequence and interpulse delay times, an accurate knowledge of tissue spin density, T1 and T2 must be known for each tissue.  相似文献   

6.
We present an analysis of the effects of chemical exchange and changes in T(1) on metabolite quantitation for heart, skeletal muscle, and brain using the one-pulse experiment for a sample which is subject to temporal variation. We use an optimization algorithm to calculate interpulse delay times, TRs, and flip angles, theta, resulting in maximal root-mean-squared signal-to-noise per unit time (S/N) for all exchanging species under 5 and 10% constraints on quantitation errors. The optimization yields TR and theta pairs giving signal-to-noise per unit time close or superior to typical literature values. Additional simulations were performed to demonstrate explicitly the dependence of the quantitation errors on pulse parameters and variations in the properties of the sample, such as may occur after an intervention. We find that (i) correction for partial saturation in accordance with the usual analysis neglecting variations in metabolite concentrations and rate constants may readily result in quantitation errors of 15% or more; the exact degree of error depends upon the details of the system under consideration; (ii) if T(1)'s vary as well, significantly larger quantitation errors may occur; and (iii) optimal values of pulse parameters may minimize errors in quantitation with minimal S/N loss.  相似文献   

7.
8.
9.
10.
11.
12.
13.
The choice of appropriate MR pulse sequences to highlight a particular pathology to best advantage is not always straightforward. In this study of intracranial haemorrhage, tissue relaxation times measured in vitro were entered into a computer program which calculated the signal intensity of each tissue (brain, blood, CSF, and bloody CSF) for all possible echo (TE) and repeat (TR) times. Analysis of graph plots of the results enabled the selection of pulse sequences which gave optimal separation of the signal intensities of intracranial haemorrhage from those of normal intracranial contents. The sequences thus chosen were used successfully in the imaging of patients with intracranial haemorrhage.  相似文献   

14.
15.
BACKGROUND: We wished to assess the feasibility of imaging the knee with ultrashort TE (UTE) pulse sequences. SUBJECTS AND METHODS: Five volunteers and 16 patients were studied with UTE (TE=0.08 ms) sequences including later echoes. Conventional fat-suppressed images and difference images were also produced by subtracting a later echo from the first. Gadodiamide enhancement was used. RESULTS: High signal was obtained in tendons, ligaments, menisci and periosteum. Normal contrast enhancement was seen in these structures. Deep and superficial layers were seen in the articular cartilage. Cartilage defects were identified. The red zone could be differentiated from the white zone of the meniscus. Meniscal tears and degeneration were observed with low signal on subtraction images. Enhancement was seen within the anterior and posterior cruciate ligaments and associated scar tissue. CONCLUSION: Ultrashort TE imaging provides new options to visualize anatomy, manipulate conspicuity, observe contrast enhancement and demonstrate disease of the knee.  相似文献   

16.
PurposeNormal adult cortical bone has a very short T2 and characteristically produces no signal with pulse sequence echo times (TEs) routinely used in clinical practice. We wished to determine whether it was possible to use ultrashort TE (UTE) pulse sequences to detect signal from cortical bone in human subjects and use this signal to characterise this tissue.Subjects and MethodsSeven volunteers and 10 patients were examined using ultrashort TE pulse sequences (TE=0.07 or 0.08 ms). Short and long inversion as well as fat suppression pulses were used as preparation pulses. Later echo images were also obtained as well as difference images produced by subtracting a later echo image from a first echo image. Saturation pulses were used for T1 measurement and sequences with progressively increasing TEs for T2* measurement. Intravenous gadodiamide was administered to four subjects.ResultsSignal in cortical bone was detected with UTE sequences in children, normal adults and patients. This signal was usually made more obvious by subtracting a later echo image from the first provided that the signal-to-noise ratio was sufficiently high.Normal mean adult T1s ranged from 140 to 260 ms, and mean T2*s ranged from 0.42 to 0.50 ms. T1 increased significantly with age (P<.01).Increased signal was observed after contrast enhancement in the normal volunteer and the three patients to whom it was administered.Reduction in signal from short T2 components was seen in acute fractures, and increase in signal in these components was seen with new bone formation after fracture malunion. In a case of osteoporosis, bone cross-sectional area and signal level appeared reduced.ConclusionSignal can be detected from normal and abnormal cortical bone with UTE pulse sequences, and this can be used to measure its T1 and T2* as well as observe contrast enhancement. Difference images are of value in increasing the conspicuity of cortical bone and observing abnormalities in disease.  相似文献   

17.
Modifications of the steady-state free precession multi-pulse technique for the effective detection of the nuclear quadrupole resonance (NQR) signals are proposed. These modifications are based on the use of composite pulses and enable the suppression of the coherent noise signals such as the magneto-acoustic and piezo-electric signals or the ringing signal from the NQR probe. Experimental results of applying the proposed technique to nitrogen-14 NQR in the sample of C6H12N4 are also presented and convincingly demonstrate its effectiveness.  相似文献   

18.
Demonstration of aortic lesions via cine magnetic resonance imaging   总被引:1,自引:0,他引:1  
Cine-MRI was used to evaluate eight patients with known thoracic aorta disease. Included in this study were three aortic coarctations, two aortic dissections, an aneurysm, a posttraumatic pseudoaneurysm, and a patent ductus arteriosus. Cine-MRI was found to be valuable in the assessment of the pathologic anatomy and associated flow disturbances in these disorders. In seven cases, the images demonstrated the aortic lesion and aberrant blood flow. Our technique was unable to image the structural lesion in the patient with patent ductus arteriosus, but the abnormal blood flow was shown. Angiographic data were available on three of the cases to confirm the MR findings. The MRI images were obtained in axial, coronal, sagittal, and oblique planes using fast field echo acquisition technique of cine-MRI. We found the additional data or benefits provided by cine-MRI, when compared to cardiac gated spin echo images, to be most advantageous in the cases of aortic coarctation and dissection only.  相似文献   

19.
Auditory functional magnetic resonance imaging (fMRI) requires quantification of sound stimuli in the magnetic environment and adequate isolation of background noise. We report the development of two novel sound measurement systems that accurately measure the sound intensity inside the ear, which can simultaneously provide the similar or greater amount of scanner- noise protection than ear-muffs. First, we placed a 2.6 x 2.6-mm microphone in an insert phone that was connected to a headphone [microphone-integrated, foam-tipped insert-phone with a headphone (MIHP)]. This attenuated scanner noise by 37.8+/-4.6 dB, a level better than the reference amount obtained using earmuffs. The nonmetallic optical microphone was integrated with a headphone [optical microphone in a headphone (OMHP)] and it effectively detected the change of sound intensity caused by variable compression on the cushions of the headphone. Wearing the OMHP reduced the noise by 28.5+/-5.9 dB and did not affect echoplanar magnetic resonance images. We also performed an auditory fMRI study using the MIHP system and presented increase in the auditory cortical activation following 10-dB increment in the intensity of sound stimulation. These two newly developed sound measurement systems successfully achieved the accurate quantification of sound stimuli with maintaining the similar level of noise protection of wearing earmuffs in the auditory fMRI experiment.  相似文献   

20.
在连续波核磁共振实验中,通常采用低频扫场产生重复再现的共振吸收信号。当处于磁场中的射频线圈引线回路等效面积不为零时,简谐扫场必然引起该闭合回路的磁通量变化,由此而产生同频简谐感生电动势并与核磁共振信号叠加共同构成振荡器输出信号。由于扫场上升和下降过程的感生电动势方向相反,从而扫场前半周和后半周所对应的共振吸收测量信号存在差异。实验结果表明:扫场强度及方向对核磁共振测量影响来源于实验测量技术缺陷,而非核磁共振的物理本质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号