首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interfacial tension and surface excess isotherms for trioctylamine (TOA) were determined and interpreted. Despite its high hydrophobicity, TOA adsorbs at the hydrocarbon/water interfaces and decreases effectively the interfacial tension, especially in systems containing acidic aqueous phase. Interfacial activity of TOA rises with an increase of the aqueous phase acidity. The effect of amine protonation is clearly observed. Interfacial tension isotherms obtained experimentally can be well matched with the Szyszkowski equation. The interfacial activity of TOA is affected by the type of the organic diluent and the composition of the aqueous phase, i.e., the kind and concentration of nonorganic electrolyte present in the system. Copyright 2001 Academic Press.  相似文献   

2.
Equilibrium interfacial tension at the liquid/liquid interfaces for two chelating metal ion extractants, 2-hydroxy-5-nonylacetophenone oxime (HNAF) and 1-phenyldecane-1,3-dion (beta-diketone), two solvating extractants, trioctylphosphine oxide (TOPO) and tributyl phosphate (TBP), and a modifier, decanol, were obtained with a drop volume tensiometer. Moreover, four equimolar binary mixtures of extractant/extractant and extractant/modifier type were considered. The composition of the mixed adsorbed monolayer and the molecular interaction parameters beta were determined by the Rosen equation. It was found that in all the studied systems coadsorption exists; however, synergism in the reduction of interfacial tension was not observed. The obtained results indicate that in the case of three mixtures considered the composition of a mixed monolayer at the hydrocarbon/water interface was quite different from that in the bulk organic phase. Only for the TOPO/beta-diketone mixture were the compositions at the interface and in the bulk organic phase similar. The obtained results indicate that it is impossible to predict the composition of a mixed monolayer by taking into account the interfacial activity of individual components of the mixture. In some cases the compound shows lower interfacial activity (smaller efficiency and effectiveness of adsorption) and occupies a dominant position at the interface, regardless of the type of hydrocarbon used as the organic diluent.  相似文献   

3.
Interfacial tension and interfacial adsorption parameters for benzyloctadecyldimethyl ammonium chloride (BODMAC) in three organic diluents were determined and interpreted. The interfacial activity of BODMAC is affected by the type of the organic diluent and the composition of the aqueous phase. The general order of interfacial activity of BODMAC is n-heptane (5% isobutanol) > carbon tetrachloride > chloroform. The effectiveness of adsorption of BODMAC is not only dependent on the organic diluent, but also on the inorganic electrolytes in the aqueous phase.  相似文献   

4.
A method for directly determining interfacial tension without iteration from the difference in height between two capillaries is presented. An experimental technique is described for organic liquids both lighter and heavier than water, in which the menisci recede over surfaces wetted by the aqueous phase, thus providing the most favourable conditions for zero contact angle. The values determined experimentally using tables prepared from the known shapes of sessile interfaces agree well with accepted values of the interfacial tension.  相似文献   

5.
Ultra-low values of the tension at an oil-aqueous electrolyte solution interface can be developed by the addition of water-soluble surfactants of the petroleum sulfonate type. Interfacial tensions in the range of 10−3 dyne/cm or lower are readily achieved with surfactant concentrations of the order of 0.1 wt%. For a given oil and aqueous solution, the minimum interfacial tension resulting from the addition of a petroleum sulfonate depends markedly on the average equivalent weight of the sulfonate. Sulfonates having average equivalent weights higher and lower than a previously determined optimum weight, when mixed so as to yield this particular average weight, will also produce ultra-low interfacial tensions. For a given oil, additional control of this unusual type of interfacial activity is accomplished by adjustment of the electrolyte concentration of the aqueous phase.  相似文献   

6.
On the basis of the values of the surface tension of the aqueous solutions of the Triton X-100 and CTAB mixture with ethanol, the surface tension of nylon-6 and the nylon-6–solution interfacial tension, the activity of the surfactant mixture and ethanol at the nylon-6–solution interface was calculated and compared to that at the solution–air one. For these calculations, the Sprow and Prausnitz equation was applied. The obtained values of the activity were used for the calculations of the work of adhesion of the solution to the polymer surface. The values of the work of adhesion obtained in this way were compared to those determined from the Young–Dupre equation by using the contact angle values of the aqueous solutions of the TX-100 and CTAB mixture with ethanol measured on the nylon-6 surface. The changes of the work of adhesion determined from the Young–Dupre equation were also considered as a function of the surface tension of the solution, its polar component and the interfacial interaction parameter.  相似文献   

7.
In this paper, interfacial tension of Cyanex 302 is measured by a Sigma-701 tensiometer and the adsorption parameters are calculated according to the Gibbs and Szyszkowski adsorption isotherms. The interfacial adsorbed behavior of Cyanex 302 is investigated. The results demonstrate that the dimer is the predominant species in the bulk organic phase; however, the monomer is adsorbed at the interface and more interfacially active. The effects of aqueous pH, ion strength, and temperature on the interfacial activity of Cyanex 302 in heptane are discussed and explained in detail. The lower interfacial activity of Cyanex 302 in aromatic hydrocarbon than in aliphatic hydrocarbon has also been determined. The values of interfacial excess at the saturated interface increase in the order n-heptane>cyclohexane>toluene>benzene, which is consistent with the order of extractability of lanthanum by Cyanex 302 in these diluents. The interfacial activity data are used to discuss the kinetic mechanism of lanthanum(III) extraction. It is shown that an interfacial mechanism is very probable, and the extraction limiting step is the reaction between the Cyanex 302 molecules in the organic phase sublayer and the adsorbed intermediate complex.  相似文献   

8.
A novel aqueous three‐phase system was formed spontaneously when a nonionic surfactant (Triton X‐100) and two polymers (PEG and dextran) were mixed. The interfacial tension between the phases was measured by the spinning drop method. It was shown that the values of interfacial tension were extremely small. The interfacial tensions of the top/middle phases were much lower than those of the middle/bottom phases. The interfacial tension was affected by component concentrations, temperature, added salts, and the density difference between two phases. Temperature exhibited a special effect on interfacial tension: with the increase of temperature, interfacial tension increases significantly.  相似文献   

9.
The recently proposed approach for representing and predicting surface tension of aqueous electrolyte solutions [Chem. Eng. Sci. 56 (2001) 2879] is extended to the prediction of interfacial tension between an organic solvent and aqueous multi-electrolyte solutions. The method of Meissner was adopted in all the calculations of activity coefficient of electrolytes. Model parameters were determined by correlating interfacial tensions reported in the literature for 11 single electrolytes, including 10 inorganic salts and one inorganic acid at isothermal conditions. The correlation yielded an overall average absolute percentage deviation (AAPD) of 0.42. Using these model parameters, the proposed approach was successfully applied to the prediction of interfacial tensions available in the literature for aqueous FeCl3–HCl, NiCl2–FeCl3–HCl and NiCl2–CoCl2–FeCl3–HCl solutions with an AAPD of 5.73.  相似文献   

10.
The interfacial activity of metal ion extractants is discussed. The interfacial tension isotherms are processed by matching the Szyszkowski equation, and estimation of selected parameters to discuss the interfacial activity of extractants. Results are presented in comprehensive tables and figures. The interfacial activity depends mainly on three different parameters; type of extractant, acidity of the aqueous phase and organic diluent. Strongly acidic extractants and protonated amine reagents exhibit the highest interfacial activity. The solvating reagents and non-protonated amines are on the opposite side of the scale, while the chelating reagents are somewhere in the middle. The acidity of the aqueous phase affects the interfacial activity of extractants, mainly by the ionisation (protonation and dissociation) of extractant molecules. Solvating diluents always decrease the interfacial activity of extractants.  相似文献   

11.
The partitioning of a sodium petroleum sulfonate between heptane and brine yields surfactants with different molar absorptivity and λmax values in the two phases, except near the point of minimum interfacial tension, e of the surfactant in the heptane phase increases sharply above the point of minimum interfacial tension between the two phases. The molar partition coefficient, MH/MW, for the surfactant between the heptane and brine phases is unity at surfactant concentrations in the brine phase below the point of minimum interfacial tension and drops sharply at concentrations above it. The critical micelle concentration of the surfactant in the aqueous phase equilibrated with the heptane phase is considerably below the concentration for minimum interfacial tension  相似文献   

12.
The measurements of the interfacial tension at the air/aqueous subphase interface as the function of pH were performed. The interfacial tension of the air–aqueous subphase interface was divided into contributions of individuals. A simple model of the influence of pH on the phosphatidylcholine monolayer at the air/hydrophobic chains of phosphatidylcholine is presented. The contributions of additive phosphatidylcholine forms (both interfacial tension values and molecular area values) depend on pH. The interfacial tension values and the molecular areas values for LH+, LOH forms of phosphatidylcholine were calculated. The assumed model was verified experimentally.  相似文献   

13.
The extraction equilibria of Th in tri-n-octylphosphine oxide (TOPO)–HNO3–H2O systems have been investigated in the absence and presence of water-miscible alcohols and acetone. The influence of TOPO concentration in an inert diluent (toluene) and the concentration of nitric acid and the water-miscible additives have been systematically examined. The slopes of the log-log plots of DTh vs. the TOPO concentration (up to 0.02M) are found to be close to 3 over a wide range of polar phase compositions leading to a coordination number of 11 for Th. The DTh values were determined as a function of the concentration of uranyl nitrate in the aqueous phase, while the effect of additives was also examined in the absence and presence of uranyl nitrate in the polar phase. The results show that at TOPO concentrations above about 2.5 · 10–3 M (about 1%) in toluene, polymerization of the solvent occurs.  相似文献   

14.
Interfacial tensions in two aqueous phase-separated cationic/anionic surfactant mixtures, CTAB/AS and 12-3-12/AS, without and with NaBr added were determined by the spinning drop method at 318.15 K. CTAB, 12-3-12 and AS are the abbreviations for cetyltrimethylammonium bromide, 1,3-propanediyl-bis(dodecyldimethylammonium bromide) and sodium dodecyl sulfonate, respectively. The interfacial tension sigma was found to be in the range of 0.06-21 microNm(-1). Toward a better understanding of the influence of the concentration difference between the separated phases in aqueous two-phase systems (ATPS) to interfacial tension, compositions of equilibrium phases were determined by elemental analysis coupled with material balance and electroneutrality. The investigation indicates that the concentration differences of surfactant ions between the separated phases and the adsorption of surfactant ions at the interface are the decisive factors determining the magnitude of interfacial tension.  相似文献   

15.
This publication presents a detailed experimental and theoretical study of mass transfer of triethylamine (TEA) across the n-decane/water interface. In preliminary investigations, the partition of TEA between n-decane and water is determined. Based on the experimental finding that the dissociation of TEA takes place in the aqueous and in the organic phase, we assume that the interfacial mass transfer is mainly affected by adsorption and desorption of ionized TEA molecules at the liquid/liquid interface. Due to the amphiphilic structure of the dissociated TEA molecules, a dynamic interfacial tension measurement technique can be used to experimentally determine the interfacial mass transport. A model-based approach, which accounts for diffusive mass transport in the finite liquid bulk phases and for adsorption and desorption of ionized TEA molecules at the interface, is employed to analyze the experimental data. In the equilibrium state, the interfacial tension of dissociated TEA at the n-decane/water interface can be adequately described by the Langmuir isotherm. The comparison between the theoretical and the experimental dynamic interfacial tension data reveals that an additional activation energy barrier for adsorption and desorption at the interface has to be regarded to accurately describe the mass transport of TEA from the n-decane phase into the aqueous phase. Corresponding adsorption rate constants can be obtained by fitting the theoretical predictions to the experimental data. Interfacial tension measurements of mass transfer from the aqueous into the organic phase are characterized by interfacial instabilities caused by Marangoni convection, which result in an enhancement of the transfer rate across the interface.  相似文献   

16.
We studied the interfacial tension between coexisting phases of aqueous solutions of dextran and polyethylene glycol. First, we characterized the phase diagram of the system and located the binodal. Second, the tie lines between the coexisting phases were determined using a method that only requires measuring the density of the coexisting phases. The interfacial tension was then measured by a spinning drop tensiometer over a broad range of polymer concentrations close to and above the critical point. In this range, the interfacial tension increases by 4 orders of magnitude with increasing polymer concentration. The scaling exponents of the interfacial tension, the correlation length, and order parameters were evaluated and showed a crossover behavior depending on the distance to the critical concentration. The scaling exponent of the interfacial tension attains the value 1.50 ± 0.01 further away from the critical point, in good agreement with mean field theory, but the increased value 1.67 ± 0.10 closer to this point, which disagrees with the Ising value 1.26. We discuss possible reasons for this discrepancy. The composition and density differences between the two coexisting phases, which may be taken as two possible order parameters, showed the expected crossover from mean field behavior to Ising model behavior as the critical point is approached. The crossover behavior of aqueous two-phase polymer solutions with increasing concentration is similar to that of polymer solutions undergoing phase separation induced by lowering the temperature.  相似文献   

17.
Experimental studies are conducted in order to elucidate the mechanisms responsible for synergism/antagonism for lowering dynamic interfacial tension in model oil/surfactant/brine systems. A well-defined model oil is selected for controlled design of experiments, thus enhancing verification of known and unknown mechanisms. The systems examined contain model oils and two petroleum sulfonate solutions. The influence of additives in oil phase, such as carboxylic acids with different chain length, n-octadecanol, and oil soluble surfactant SP-60, on the equivalent alkane carbon number (EACN) values has been examined. The interfacial tensions of different model oils with different EACN values against surfactant solutions with different n(min) values have also been obtained. We find that antagonism has been observed when EACN/n(min) value is far from unity by adding organic components, while synergism has been observed when EACN/n(min) value is close to unity. The results present here suggest that organic additives in oil phase controlled interfacial tension by changing the partition of surfactants in oil phase, aqueous phase, and interface.  相似文献   

18.
Partition coefficients, surface tension, and interfacial tension for some polar organic components dissolved in oil/water model systems have been investigated. The systems consist of isooctane modeling the oil phase and of water solutions of NaCl and CaCl2 modeling the water phase. The organic compounds examined were 1-naphtoic acid, 5-indanol, and quinoline, all well-defined molecules known to be representative of polar components in crude oil. The dependence on pH, salinity, and ionic strength in the water phase was investigated. The surface tension and interfacial tension were also examined as a function of component concentration. The results show a connection between the distribution of the polar components and the interfacial tension. Correspondence between the partition coefficient and the pKa value for the components is also reported. For 1-naphtoic acid none of the two ionization forms of the molecule are found to be surface active in aqueous solution. For 5-indanol both forms are surface active, and for quinoline only the nonionic form of the molecule is found to be surface active. The results indicate that the aqueous phase is the one that governs the interfacial tension. Increasing salinity increases the concentration of the component in the oil phase and decreases the interfacial tension between the oil phase and the aqueous phase. The results are explained due to the "salting-out" effect and to changes in the electrostatics for the various systems. Copyright 1999 Academic Press.  相似文献   

19.
In this work, a coflowing microfluidic device was used to determine the influence of different mixed sodium dodecyl sulfate (SDS)-poly(ethylene glycol) (PEG) compound systems on dynamic interfacial tension and, by extension, corresponding emulsion droplet sizes. The aqueous solutions were used as the continuous phase in the microfluidic device, while octane was used as the organic dispersed phase. Combined SDS-PEG systems lower the interfacial tension more than either component can alone up to the critical aggregation concentration (CAC) of SDS. Octane droplet sizes produced in the microfluidic device using combined SDS-PEG systems were smaller than those produced using SDS alone, and a reduction in dynamic interfacial tension as determined by drop size followed a pattern similar to that observed in the static case (PEG4000 > PEG600 > PEG400 > PEG200 > PEG8000) with the exception of PEG8000. Finally, a previously formulated model relating interfacial tension to droplet size was used to estimate the dynamic interfacial tensions in the microfluidic device.  相似文献   

20.
Measurements of advancing contact angles (θ) were carried out for aqueous solutions of cetylpyridinium bromide (CPBr) and propanol mixtures at constant CPBr concentration equal to 1 × 10−5, 1 × 10−4, 6 × 10−4, 1 × 10−3 M, respectively, on polytetrafluoroethylene (PTFE). The obtained results indicate that the wettability of PTFE by aqueous solutions of these mixtures depends on their composition and concentration. In contrast to Zisman, there is no linear dependence between the cos θ and surface tension of aqueous solutions of CPBr and propanol mixtures (γLV), but a linear relationship exists between the adhesion tension and the surface tension of aqueous solutions of CPBr and propanol mixtures which have a slope equal to −1, and between cos θ and the reciprocal of the surface tension of solution. The slope equal to −1 and the intercept on the cos θ axis close to −1 suggest that adsorption of CPBr and propanol mixtures and the orientation of their molecules at aqueous solution–air and PTFE–aqueous solution interfaces are the same. This also suggests that the work of solution adhesion to the PTFE surface does not depend on the concentration of propanol and CPBr. Extrapolation of the straight line to the point corresponding to the surface tension of solution, which completely spreads over the PTFE surface, gives the value of the critical surface tension of PTFE wetting equal to 24.84 mN/m. This value is higher than PTFE surface tension (20.24 mN/m) and the values of the critical surface tension of PTFE wetting determined by other investigators from the contact angle of nonpolar liquids (e.g. n-alkanes). The differences between the value of the critical surface tension obtained here and those which can be found in the literature were discussed on the basis of the simple thermodynamic rules. Using the measured values of the contact angles and Young equation the PTFE–aqueous solution interfacial tension was determined. The values of PTFE–aqueous solution interfacial tension were also calculated from Miller and co-workers equation in which the correction coefficient of nonideality of the surface monolayer was introduced. From comparison of the obtained values it appears that good agreement exists between the values of PTFE–solution interfacial tension calculated on the basis of Young and Miller and co-workers equations in the whole range of propanol concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号