首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
S波段相对论速调管振荡器研究   总被引:3,自引:0,他引:3       下载免费PDF全文
介绍利用20 GW加速器二极管产生的电子束源,开展S波段相对论速调管振荡器(RKO)的理论设计、粒子模拟和实验研究的情况.该RKO采用3个紧密耦合的圆柱腔作为振荡腔,束流经过一段漂移管的群聚后采用三轴输出腔提取微波.该振荡器具有起振时间快、结构紧凑、束波转换效率较高等优点.采用无箔空心阴极和0.9 T的恒流源磁场引出的电压1 MV、束流13kA、脉宽40 ns的环形电子束驱动RKO,单次运行输出了3.5 GW的辐射微波功率,效率27%,频率2.86 GHz,瞬时带宽2%;脉冲重复频率20 Hz运行时,输出 关键词: 相对论速调管 振荡器 三轴提取腔 高功率微波  相似文献   

2.
提出并研制成功了开耦合孔锁定的长脉冲、重复频率运行的相对论扩展互作用腔振荡器(REICO)。将数值模拟和实验研究紧密结合,分析了长脉冲REICO实验中模式竞争和脉冲缩短的根源,提出了开耦合孔的三间隙扩展互作用腔结构,有效抑制了长脉冲束流调制的模式竞争和脉冲缩短问题,使调制束流脉宽由60 ns提高到140 ns,调制束流由2 kA提高到5 kA,经过优化REICO参数,使器件的辐射微波功率和效率有了明显提高。采用500 kV/4.2 kA/210 ns/20 Hz的电子束驱动S波段REICO,实现了峰值功率570 MW、频率2.89 GHz、脉宽大于160 ns、重复频率20 Hz的辐射微波稳定输出,功率效率27%,能量效率23%。  相似文献   

3.
 利用新研制的紧凑型线性变压器驱动源(LTD)脉冲功率源二极管产生的电子束源,开展了S波段长脉冲相对论速调管放大器(RKA)的初步实验研究。采用无箔空心阴极和0.9 T恒流源引导磁场从LTD二极管引出了电压600 kV、束流6 kA、脉宽150 ns的环形电子束,该电子束经过1个同轴输入腔和2个同轴调制腔的调制后,产生了幅度5 kA、脉宽110 ns的基波调制束流,采用该调制束流驱动同轴微波提取腔,辐射输出了峰值功率820 MW/110 ns的辐射微波,效率28%,增益36 dB。同时,开展了重复脉冲RKA和相位特性的实验研究,重复频率10 Hz运行时,辐射微波达到800 MW/100 ns,相位抖动小于 20°。  相似文献   

4.
利用新研制的紧凑型线性变压器驱动源(LTD)脉冲功率源二极管产生的电子束源,开展了S波段长脉冲相对论速调管放大器(RKA)的初步实验研究。采用无箔空心阴极和0.9 T恒流源引导磁场从LTD二极管引出了电压600 kV、束流6 kA、脉宽150 ns的环形电子束,该电子束经过1个同轴输入腔和2个同轴调制腔的调制后,产生了幅度5 kA、脉宽110 ns的基波调制束流,采用该调制束流驱动同轴微波提取腔,辐射输出了峰值功率820 MW/110 ns的辐射微波,效率28%,增益36 dB。同时,开展了重复脉冲RKA和相位特性的实验研究,重复频率10 Hz运行时,辐射微波达到800 MW/100 ns,相位抖动小于 20°。  相似文献   

5.
吴洋  金晓  马乔生  李正红  鞠炳全  苏昶  许州  唐传祥 《物理学报》2011,60(8):84101-084101
根据两腔振荡器和返波管的特点研制了过模结构返波振荡器, 该器件主要由调制腔和换能腔(慢波结构)两部分组成. 调制腔既是电子束的预调制腔, 也是微波谐振反射腔, 它同换能腔形成一个过模微波谐振腔,经调制腔调制后的电子束在换能腔中实现束波能量转换. 根据加速器的电子束参数(束压为1 MV,束流为20 kA)设计了一个X波段的高功率微波器件,2.5维粒子模拟程序模拟得到微波频率为8.25 GHz,输出功率为5.70 GW. 用超导磁体作为引导磁场,单次运行输出微波功率为5.20 GW,微波频率为(8.25±0. 关键词: 两腔振荡器 返波振荡器 多波切连科夫发生器  相似文献   

6.
提出并研制成功了开耦合孔锁定的长脉冲、重复频率运行的相对论扩展互作用腔振荡器(REICO)。将数值模拟和实验研究紧密结合,分析了长脉冲REICO实验中模式竞争和脉冲缩短的根源,提出了开耦合孔的三间隙扩展互作用腔结构,有效抑制了长脉冲束流调制的模式竞争和脉冲缩短问题,使调制束流脉宽由60 ns提高到140 ns,调制束流由2 kA提高到5 kA,经过优化REICO参数,使器件的辐射微波功率和效率有了明显提高。采用500 kV/4.2 kA/210 ns/20 Hz的电子束驱动S波段REICO,实现了峰值功率570MW、频率2.89 GHz、脉宽大于160 ns、重复频率20 Hz的辐射微波稳定输出,功率效率27%,能量效率23%。  相似文献   

7.
 介绍了S波段强流相对论速调管放大器(RKA)双间隙输出腔高频系统的设计,并利用3维粒子模拟程序模拟和优化了短脉冲强流相对论调制电子束经过双间隙输出腔后的微波提取。在束压640 kV、束流6 kA、基波调制深度80%的条件下,模拟得到功率为1.1 GW的微波,频率约为2.85 GHz,效率28%。在高频分析和粒子模拟的基础上进行了实验研究,实验中采用束压640 kV、束流6 kA的环行电子束,经过优化调节RKA参数,在中间腔后得到了约4.6 kA的基波调制电流,加上双间隙提取腔后从该RKA获得了频率为2.9 GHz、功率为1 GW、脉宽22 ns的输出微波,束波转换效率26%。  相似文献   

8.
介绍了S波段强流相对论速调管放大器(RKA)双间隙输出腔高频系统的设计,并利用3维粒子模拟程序模拟和优化了短脉冲强流相对论调制电子束经过双间隙输出腔后的微波提取。在束压640 kV、束流6 kA、基波调制深度80%的条件下,模拟得到功率为1.1 GW的微波,频率约为2.85 GHz,效率28%。在高频分析和粒子模拟的基础上进行了实验研究,实验中采用束压640 kV、束流6 kA的环行电子束,经过优化调节RKA参数,在中间腔后得到了约4.6 kA的基波调制电流,加上双间隙提取腔后从该RKA获得了频率为2.9 GHz、功率为1 GW、脉宽22 ns的输出微波,束波转换效率26%。  相似文献   

9.
强流短脉冲相对论速调管放大器实验研究   总被引:3,自引:2,他引:1       下载免费PDF全文
 利用无箔空心石墨阴极和0.65T的脉冲引导磁场,从Sinus加速器二极管引出了电压约750kV、电流约8.6kA、脉宽40ns的环形电子束,经过输入腔和中间腔间隙调制后,得到了7kA/43ns的基波调制电流,经过输出腔间隙后,得到了2.1GW/15ns的最大微波输出功率,束波转换效率33%,最高增益为40dB,并发现脉冲缩短现象。  相似文献   

10.
提出了一种类周期加载微波腔结构,通过理论和全电磁2.5维相对论粒子模拟程序计算,证实了电子束可以与这种谐振腔结构发生相互作用。基于该谐振腔特点,通过ASTRA程序(包含电子束自身空间电荷场的粒子运动模拟程序)设计和优化了一个X波段的类周期加载微波腔振荡器,该振荡器的束波转换效率理论值可达52%,工作频率为9.4 GHz。然后用全电磁2.5维相对论粒子模拟程序进行了进一步的优化,模拟中,输入电压700 kV,电流6.6 kA,磁场4.4 T,其输出功率为1.67 GW,束波转换效率达到36%。实验上输出微波峰值功率达到1.3 GW,脉宽26 ns,束波转换效率为26%。  相似文献   

11.
感性加载宽间隙腔相对论速调管的粒子模拟   总被引:1,自引:1,他引:0  
 通过粒子模拟的方法研究了三腔结构的感性加载宽间隙腔相对论速调管放大器,分析了宽间隙腔中垫圈/杆等参数对于束流调制的影响。模拟结果表明:感性加载的宽间隙腔能够克服宽腔所带来的势垒效应,增加电子束与腔的作用时间,提高束流调制和能量提取的效率。模拟中采用500 keV,6 kA的电子束,经过两腔调制得到了约4.5 kA的调制电流,调制深度接近80%;采用渐变结构的输出腔,得到功率约1.2 GW,频率2.86 GHz,效率为40%的输出微波。  相似文献   

12.
陈永东  吴洋  谢鸿全  李正红  周自刚 《物理学报》2013,62(10):104104-104104
在强流相对论电子束驱动的相对论速调管放大器中, 由于强流和高场强的影响, 尤其是中间腔具有高Q值, 微波腔与电子束之间的非线性作用很明显, 严重影响器件性能. 根据麦克斯韦方程组以及电子在微波场作用下运动方程给出了中间腔的束-波互作用自洽方程. 从这些方程出发, 研究了调制深度和调制频率对间隙电压幅度和相位的影响. 对比常规速调管的等效电路模型, 自洽公式给出的间隙电压幅值同粒子模拟结果更接近, 尤其是较高调制深度的情况. 同时器件带宽随调制深度的增加而变宽, 这也同粒子模拟结果一致. 由此设计了一个S波段高增益相对论放大器, 在LTD (长脉冲螺旋线)加速器上开展了相应的实验工作, 实验上获得了1.1 GW的输出功率, 器件增益49 dB. 关键词: 相对论速调管 非线性互作用 自洽方程  相似文献   

13.
设计了一个紧凑型L波段相对论返波振荡器 (RBWO),利用Karat 2.5维全电磁粒子模拟程序研究了器件内部束-波作用的物理过程。模拟结果表明:在二极管电压700 kV、电子束流10 kA、导引磁场为1.0 T时,能实现L波段2.23 GW高功率微波输出,平均效率约为31.8%。为验证模拟结果,在高阻加速器平台上进行了初步实验:当二极管电压为703 kV、电流10.6 kA、导引磁场为0.8 T时,实验获得了峰值功率1.05 GW、频率1.61 GHz、脉宽38 ns的高功率微波输出,其功率效率为14.4%。  相似文献   

14.
结合低磁场返波管振荡器和虚阴极振荡器的优点,设计了一个具有较高效率的虚阴极振荡器,通过添加半反射腔,使虚阴极在由阳极箔、波导和半反射腔组成的准谐振腔内形成,实现器件的高效率、高功率运行。当电子能量和束流分别为480keV和23kA时,采用2.5维粒子模拟(PIC)程序模拟得到频率为3.7GHz、功率为2.6GW的微波输出,器件束波转换效率约为23%。  相似文献   

15.
结合低磁场返波管振荡器和虚阴极振荡器的优点,设计了一个具有较高效率的虚阴极振荡器,通过添加半反射腔,使虚阴极在由阳极箔、波导和半反射腔组成的准谐振腔内形成,实现器件的高效率、高功率运行。当电子能量和束流分别为480 keV和23 kA时,采用2.5维粒子模拟(PIC)程序模拟得到频率为3.7 GHz、功率为2.6 GW的微波输出,器件束波转换效率约为23%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号