共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
提出一种用于彩色目标跟踪的改进粒子群优化算法(Improved Particle Swarm Optimization Algorithms,IP-SOA)。针对彩色目标,选择加权彩色直方图作为目标的特征,选用Bhattacharyya系数作为特征相似性度量,其最大值位置表示目标位置。对粒子群优化算法进行了改进,即自动调整惯性权重函数与认知学习因子,每次递推时对粒子速度、单帧位移总量加以限制,对Bhattacharyya系数优化,快速求取函数最大值位置。利用彩色序列图像进行仿真实验,结果表明,该方法能够实时跟踪飞机、车辆等目标,在目标被部分遮挡时能稳健跟踪。 相似文献
3.
针对红外目标在跟踪中计算复杂的问题,构建辅助粒子滤波算法。利用贝叶斯重要性采样算法,在权值大的粒子基础上引入辅助粒子变量,然后重新定义重要采样分布函数,防止重采样后粒子概率密度变化。两次加权计算,使粒子权值比仅用重采样的粒子权值变化更稳定,采样点最接近真实状态;同时不同权值粒子的概率阈值可作为粒子滤波是否完成的判断准则。在二维平面构造红外运动目标模型中,系统为零均值高斯白噪声。仿真数据表明:该算法在x,y方向的均方误差、画面处理时间、RM SE性能上优于粒子滤波算法和重采样粒子滤波算法。 相似文献
4.
5.
为了解决传统水下目标跟踪中目标数目估计不准确、状态估计误差增长过快的问题,提出了一种基于高斯混合概率假设滤波的水下目标跟踪算法。该算法基于双基地观测模型,采用高斯混合概率假设滤波算法处理方位和时延信息,利用粒子群算法处理多普勒频率获得矢量速度,进一步提升算法的跟踪精度。结果表明,该算法能完成在杂波环境下对目标的跟踪,相比传统的关联算法,能够有效地实现目标个数估计和抑制状态误差增长的目的。 相似文献
6.
基于直方图的粒子滤波已成功地用于解决计算机视觉中的目标跟踪问题,但是,在观测似然计算上的低效限制了它们的实时应用。针对该问题,提出了一种快速的粒子跟踪方法。其建立在积分直方图技术的基础上,使得每个候选样本的观测似然能够由少量的查找表运算有效地计算出来。该方法使用了大量的粒子以确保鲁棒性,同时确保具备实时跟踪的能力。实验结果表明该方法在计算效率上优于通常的粒子滤波跟踪方法。 相似文献
7.
如何解决粒子的退化问题和提高算法对突变状态的跟踪能力,是粒子滤波算法研究和应用中需要考虑的两个主要因素.传统的再采样算法虽然可以解决退化问题,但是容易导致粒子耗尽;扩展粒子滤波算法虽然可在一定程度上解决粒子耗尽问题,但其对突变状态的跟踪能力却不近人意;强跟踪粒子滤波算法可以提高对突变状态的跟踪能力,但却未能较好地改善粒子退化问题.针对上述问题,本文将随机摄动再采样方法引入强跟踪粒子滤波算法,提出了一种随机摄动强跟踪粒子滤波算法.当粒子退化问题严重时,对权值最大的粒子迭加随机摄动,用摄动粒子替换退化粒子以解决粒子退化问题,同时由于摄动粒子的加入增加了粒子集的多样性,可在一定程度上缓解粒子耗尽问题,提高算法对突变状态的跟踪能力.利用标准验证模型和分时恒定系统对所提出的算法进行了仿真验证,仿真结果证明了该算法的可行性和有效性. 相似文献
8.
基于动态目标建模的粒子滤波视觉跟踪算法 总被引:3,自引:1,他引:3
提出一种根据场景变化动态建立目标模型的粒子滤波视觉跟踪算法.该方法首先选择简单且具有互补性的特征描述当前图像,并统一采用直方图法对这些特征进行建模;然后在粒子滤波框架下,根据巴塔恰里亚测度评价各个目标特征和背景特征之间的可区分程度,动态调整特征间的置信度;并对各个特征似然函数的噪音参量进行在线估计和更新,使其似然函数的度量标准达到统一.分析和实验表明,该算法性能优于仅仅采用多特征融合进行粒子滤波视觉跟踪的方法,对摄像机运动、混淆干扰、遮挡及目标外观大小的改变具有更强的鲁棒性. 相似文献
9.
粒子群算法是一种新的进化算法,算法思路适合于进行视频跟踪,但是由于在视频跟踪过程中以跟踪窗口作为粒子,因此该粒子具有中心点横坐标、中心点纵坐标和窗口半径三维特征向量,计算冗余较大,难以满足视频跟踪的实时性要求。提出了一种多粒子群视频跟踪算法,即在跟踪过程中使用多个粒子群,粒子群与粒子群之间粒子半径不同,在各粒子群以评价函数收敛到最佳中心点后,再完成各自半径的一维粒子群计算。这样就可将三维粒子群计算分为一个两维和一个一维粒子群计算,最后通过比较得出最佳粒子,作为搜索结果。分析了这一算法成立的必要条件,即当选择Bhattacharyya系数计算方法作为粒子群算法的评价函数时,大于目标的固定窗体的中心点可以收敛到目标的形心。实验证明,这种基于多粒子群的跟踪算法可以应用于实时视频跟踪,其跟踪效果优于传统算法。 相似文献
10.
基于概率假设密度滤波平滑器的检测前跟踪算法 总被引:1,自引:0,他引:1
基于概率假设密度滤波(PHD)的检测前跟踪(TBD)技术可以有效解决未知弱小多目标检测问题。PHD-TBD算法粒子权重计算受量测噪声影响明显,导致目标数估计存在起伏现象,制约了PHD-TBD算法性能。对PHD-TBD技术进行研究,引进概率假设密度滤波平滑器,提出基于平滑的PHD-TBD算法。该算法对当前帧目标数估计时,综合利用前向递推和后向平滑结果对粒子权重进行更新,在一定程度上克服了随机量测噪声的影响。通过仿真验证,该算法能够有效发现目标,准确估计目标数目和位置,性能有较大提高。 相似文献
11.
12.
13.
14.
15.
16.
17.
基于改进巴氏指标和模型更新的视觉跟踪算法 总被引:1,自引:0,他引:1
传统的Mean Shift算法采用巴氏系数度量模型与候选模型之间的统计特征相似性,但是由于背景特征的影响,有时应用巴氏指标进行匹配得到最优解的位置并不一定是目标的实际位置,在跟踪过程中可能导致目标定位出现偏差。该文提出一种改进的巴氏系数相似度指标,指标由于引入了前景/背景置信值,能够有效抑制待匹配区域中背景特征的影响,突出目标特征的权重,与原始的巴氏指标相比,明显提高了目标匹配的准确性。基于改进的巴氏指标,对目标与背景区域双模型相似度系数进行综合分析,合理地判断干扰目标匹配的原因,从而采取相应的模型更新策略。采用4段具有挑战性的视频序列对5种跟踪算法进行了测试,通过定量实验分析可知,文中算法处理1帧视频所需的平均时间为75.76 ms,实时性仅次于原始的Mean Shift跟踪算法,同时跟踪误差在5种跟踪算法中取得了最优结果。实验结果表明,该算法能够有效抑制背景干扰和避免模型漂移,在不同的复杂场景下都具有一定的鲁棒性。 相似文献