首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hexamethylenetetramine (HMT) has been examined for its effect on the binding of methyl orange homologs, methyl orange, ethyl orange, propyl orange, and butyl orange by polyvinylpyrrolidone (PVP). In the presence of HMT the entropy changes associated with the binding tend to become more positive and the absolute magnitude in the enthalpy changes becomes smaller compared with those in the absence of HMT. These tendencies are accounted for in terms of the water-structure-promoting effect of HMT, hence the enhancement of hydrophobic interactions in the binding. PVP undergoes changes in conformation on the addition of HMT and its conformation becomes more compact. This also increases the contribution of the hydrophobic interactions to the macromolecule-small molecule interaction. Some other effects exerted by the added HMT on the binding system are also described.  相似文献   

2.
3.
4.
The interaction of polyvinylpyrrolidone with methyl orange, ethyl orange, propyl orange, and butyl orange has been studied by an equilibrium dialysis method at 5, 15, 25, and 35°C. The first binding constants and the thermodynamic parameters in the course of the binding have been calculated. It was found that the free energy and the enthalpy changes are all negative and the entropy change is largely positive. The longer the alkyl chain of the dyes, the more positive is the enthalpy change (though it is always in the negative direction) and hence the larger is the entropy change. The favorable free energy of the binding of butyl orange observed for the formation of the dye–polymer complex seems to be a result of a favorable entropy change rather than any favorable enthalpy change. Temperature dependences of the thermodynamic functions were apparently observed. That is, ΔF and ΔH become larger in absolute magnitude as the temperature increases. The positive quantity of ΔS tends to decrease with increasing temperture. All these facts obtained can be interpreted satisfactorily by the hydrophobic interaction between hydrocarbon portions of the dyes and nonpolar parts of the macromolecule.  相似文献   

5.
The binding of methyl orange, ethyl orange, propyl orange, and butyl orange by poly(vinylpyrrolidone) has been examined by a technique of equilibrium dialysis over a high temperature range (60–90°C). The first binding constants and the thermodynamic parameters in the course of the binding were evaluated. The results obtained at these temperatures were compared to those at lower ones (5–35°C) described previously in order to estimate the contribution of hydrophobic bonds to the binding. It was found that at the 60–90°C range complex formation between the dye and the macromolecule is associated with an exothermic enthalpy change and a positive entropy change. The enthalpy and entropy changes of the binding are of the order of ?4.5 kcal/mole and 6 eu, respectively, for each dye measured. Thus the binding is mainly enthalpy-controlled. Furthermore the effect of the alkyl chain length of the dye on both the ΔH° and ΔS° values is not pronounced. Also temperature dependences of the ΔH° and ΔS° terms were not observed. All these observations in the higher temperature range can be explained as a result of the disruption of water structure in the binding environment and hence a decrease in hydrophobic bond formation between the dye and the polymer.  相似文献   

6.
Powdered Nylon 66 was prepared as a model of amorphous polymers. The resultant powder polyamide was composed of only amorphous regions. The extent of uptake of the acid azo dyes, a homologous series of methyl orange derivatives, by the polymer was measured in an aqueous solution. The first binding constants and the thermodynamic parameters in the course of the binding were evaluated. The thermodynamic behaviors obtained are very similar to those of crosslinked polyvinylpyrrolidone. The favorable free energy of the binding is accompanied by an entropy gain and an exothermic enthalpy change. The shorter the alkyl chain of the dyes, the more negative is the enthalpy change and, hence, the smaller is the entropy change. The thermodynamic data for butyl orange showed that the binding process is athermal and is wholly an entropic effect. The binding of the dyes to the matrix is entropically favorable as a result of the operation of the hydrophobic effect. In addition, an electrostatic force is operative between the sulfonate group on the dyes and the terminal amino groups on the polyamide.  相似文献   

7.
8.
The ability of powdered Nylon 612 to bind methyl orange, ethyl orange, propyl orange, and butyl orange was investigated at 5, 15, 25 and 35°C in an aqueous solution. The amount of binding of the dye is much higher with this polyamide than with powdered Nylon 66 reported previously,1 although the former polymer has fewer amide end groups. The Van't Hoff plots of the first binding constant for the binding of butyl orange and propyl orange by powdered Nylon 612 exhibit a bell-shaped curve, whereas the plots for methyl orange and ethyl orange do not. Maximal binding occurs at approximately 15°C for propyl orange and at about 25°C for butyl orange. This is the first instance where the peculiar temperature dependence of the binding constant has been found in the binding of propyl orange, whose hydrophobicity is less than that of butyl orange. These tendencies can be accounted for in terms of increased hydrophobic of butyl orange. These tendencies can be accounted for in terms of increased hydrophobic domains in powdered Nylon 612 and enhanced hydrophobic contributions in the binding process.  相似文献   

9.
10.
Polyion complexes of sodium poly(methacrylate) and piperidinium cationic polymers [I], which are insoluble in water and have an equal number of positive and negative charges, bind organic anions (methyl orange, ethyl orange, propyl orange, butyl orange, and pentyl orange) in aqueous solution. The strength of the binding is enhanced by an increase in the hydrophobicity of the polyion complex and the small cosolute. Moreover, strong cooperative interactions appear with increased uptake of the small molecule. Urea and an inorganic electrolyte (KCl) were examined for their effect on the binding, the amount of which is strongly suppressed by these additives. The significance of hydrophobic and electrostatic interactions which accompany the binding is described.  相似文献   

11.
The binding of methyl orange, ethyl orange, and propyl orange by polycations involving various apolar pendant groups such as methyl, ethyl, benzyl, or dodecylbenzyl groups has been examined quantitatively by an equilibrium dialysis method at 5, 15, 25, and 35°C. The first binding constants and the thermodynamic parameters in the course of the binding have been calculated. The favorable free energy of the binding is accompanied by an entropy gain and an exothermic enthalpy change. The shorter the alkyl chain of the dyes or the polymers, the more negative is the enthalpy change and hence the smaller is the entropy change. Furthermore, an increase in binding affinity can be created in the polycation upon introduction of hydrophobic groups. In particular, the binding ability of the polycation containing a dodecylbenzyl group for methyl orange is almost 300-fold that of bovine serum albumin. Therefore it is clear that hydrophobic interactions, as well as electrostatic ones, are involved in the binding.  相似文献   

12.
2-Diethylaminoethyl methacrylate (DEAEMA)–N-vinyl-2-pyrrolidone (VPy) copolymers of various compositions have been synthesized. The resultant copolymers were examined for their ability to bind methyl orange and its homologs, in particular butyl orange, at 5, 15, 25, and 35°C in aqueous solutions. The amount of binding of butyl orange is much higher with the copolymers than with polyvinylpyrrolidone or with 2-hydroxyethyl methacrylate–N-vinyl-2-pyrrolidone copolymers. Introduction of only 3% of the hydrophobic DEAEMA residue increases markedly the binding affinity toward the cosolute. Maximal binding is obtained at 15°C in the temperature range measured. This peculiar temperature dependence of the extent of binding is explicable on the basis of hydrophobic effects involved in this binding. The peculiar temperature dependence disappeared in aqueous solution of NaSCN which acts as a water-structure breaker: the extent of binding changes regularly with temperature. This is interpretable only in terms of reduction of hydrophobic contribution to the binding. With propyl orange, which is a less hydrophobic cosolute than butyl orange, the peculiarity of the binding was not detected.  相似文献   

13.
2-Hydroxyethyl methacrylate (HEMA)-N-vinyl-2-pyrrolidone (VPy) copolymers of various compositions have been prepared. The copolymers obtained were examined for their ability to bind a homologous series of methyl orange derivatives, methyl orange, ethyl orange, propyl orange, and butyl orange, at 5, 15, 25, and 35°C, respectively, in an aqueous solution. The first binding constants and the thermodynamic parameters that accompanied the binding were evaluated. The binding ability of the copolymer for the small cosolute was enhanced with an increase of the HEMA content in the copolymer. Moreover, a bell-shaped curve appeared in the binding of butyl orange by the copolymers having higher HEMA residues when the first binding constant was plotted as a function of temperature, whereas no such phenomenon was detected for the copolymers with less HEMA content or for the less hydrophobic dye, methyl orange, ethyl orange, or propyl orange. This peculiar temperature dependence of the first binding constant shows that the enthalpy of the binding varies from a positive (unfavorable) value below ca. 15°C to a negative (favorable) one above this temperature. This behavior can be accounted for in terms of more hydrophobic effects involved in the binding process.  相似文献   

14.
This study reports the effect of substituents in the ortho position of polyaniline on the adsorption capacity to remove the anionic dye methyl orange (MO) from an aqueous solution. The aim of this study is the synthesis of polyaniline (PANI) and its derivatives, poly-o-methylaniline (poly-o-toluidine, POT) and poly-o-methoxyaniline (poly-o-anisidine, POA) for the adsorption removal of MO dye. All polymers were obtained by oxidative polymerization of the corresponding monomers and characterized by scanning electron microscopy (SEM) and infrared spectroscopy (IR). The average particle size of the polymer was about 200 nm. The effect of various parameters such as pH, temperature, adsorption time and initial concentration was analyzed. It was found that the adsorption capacity for dye removal increases from 50.68 to 222.56 mg g−1 for PANI, from 16.89 to 66.57 mg g−1 for POT, and from 97.26 to 532.54 mg g−1 for POA with an increase in the initial dye concentration from 5 up to 50 mg L−1. For all polymers, the equilibrium state of MO adsorption was reached in 50 min. The results showed that MO adsorption on PANI, POT, and POA is well described by a pseudo second order kinetic model. Isothermal studies have shown that adsorption is in good agreement with the Langmuir isotherm model, as evidenced by higher values of correlation coefficients. Based on the data of thermodynamic studies, it was concluded that MO adsorption on PANI, POT, and POA is spontaneous and endothermic.  相似文献   

15.
Polyvinylpyrrolidones of various degrees of cross-linkage have been prepared by radical polymerization of N-vinylpyrrolidone with methylenebisacrylamide to regulate the fraction of cross-linkage. The insoluble polymers obtained were examined for their ability to bind methyl orange and its homologs, methyl orange, ethyl orange, propyl orange, and butyl orange at 5, 15, 25, and 35°C, respectively, in an aqueous solution. The first binding constants and the thermodynamic parameters that accompanied the binding were calculated. For any particular dye the extent of binding, the absolute magnitude of ΔF°, and the value of ΔS° increased as the degree of cross-linkage increased, starting with water-soluble polyvinylpyrrolidone (zero cross-linkage) and proceeding to the polymer with high cross-linking density. This behavior can be accounted for in terms of more extensive hydrophobic domains in the cross-linked polymeric matrix that enhances hydrophobic interactions in the binding process. Moreover, the cross-linked macromolecule polymerized in the presence of methyl orange and then stripped of the bound methyl orange shows substantially stronger binding for this small molecule than the polymer cross-linked in the absence of methyl orange. In contrast, the cross-linked polymer prepared similarly in the presence of the larger molecule, butyl orange, exhibits decreased affinity toward the smaller consolute, methyl orange, than either of the other polymers described. It seems, therefore, that the polymeric matrix provides favorable binding sites or pockets that can accommodate a specific small molecule. The preparative procedure, which uses a small-molecule template, molds into the polymer some structural specificity in the binding of small molecules.  相似文献   

16.
Cloud point curves and temperatures have been determined for aqueous solutions of poly(vinylpyrrolidone) at several concentrations for a variety of inorganic salts (phosphates, monohydrogen phosphates, sulfates, carbonates, dihydrogen phosphates and fluorides). The resulting dependency of the critical temperatures (mostly between 289 and 350 K) on the molar concentration can be expressed as sequences showing the decreasing effect of anion species or cation species in salting out the polymer. The decreasing order of effectiveness of the anions in reducing the temperatures is PO 4 3– >HPO 4 2– >SO 4 2– CO 3 2– >H2PO 4 >F. The order for cation is Na+>K+. The changes brought about in temperatures by the salts were found to be the results of the changes taking place in the hydrophilic and hydrophobic interactions among polymer, solvent and additive salts and of the change of water structure by structure making or structure breaking ions, and of the influence of salts on the hydration sheath of the polymer.Deceased  相似文献   

17.
Prussian blue nanoparticles protected by poly(vinylpyrrolidone)   总被引:3,自引:0,他引:3  
Prussian blue (PB) nanoparticles protected by poly(vinylpyrrolidone) (PVP) were prepared by mixing aqueous Fe2+, Fe(CN)63-, and PVP solutions together and were characterized by UV-vis, IR, XRPD, and TEM. Averaged dimensions of the nanoparticles were controlled between 12 and 27 nm depending on initial Fe ion concentrations and feed ratios of Fe ion to PVP. Solubility of PB bulk in organic solvents is considerably low; nevertheless, formations of the PB nanoparticles dramatically increase the solubility in a variety of organic solvents. It is noteworthy that the PVP-protected PB nanoparticles stably maintain the cluster formations without further aggregations and dissociation in CHCl3 over 1 month. Measurement of the critical temperature (Tc) where PB nanoparticles exhibit a ferromagnetic property showed a gradual decrease of Tc for the nanoparticles as the particle sizes become smaller. This result could be ascribed to the reduction of the averaged numbers of magnetic interacted neighbors.  相似文献   

18.
19.
The binding of two ionic azo dyes (4-phenylazo-1-naphthol mono-and disulfonate) and a fluorescent probe (2-p-toluidinonaphthalene-6-sulfonic acid, TNS) to poly(vinylpyrrolidone) (PVP) was studied to obtain information on the nature of the interaction, binding isotherm, and binding site. Sorption of the dyes followed a Langmuir isotherm only at low polymer saturation. Apparent cooperativity in binding was seen at higher saturation. The polymer had a higher intrinsic binding constant but lower binding capacity for the doubly charged dye than for the structurally similar singly charged dye. Both dyes consisted of tautomeric mixtures of hydrazone and azonaphthol forms in equilibrium in the bound and unbound state. The preferential binding of the azonaphthol tautomer of the disulfonate was highly exothermic and accompanied by an entropy decrease. The binding of the hydrazone form was less favored by 1.8 kcal/mol, was weakly exothermic, and accompained by an entropy increase. Increased preference for the azonaphthol tautomer accompanied chain extension from charging the polymer. Chain extension had no effect on the emission frequency of bound TNS. Large differences in binding capacities for similarly charged dyes indicated the existence of specific dye-site interactions. Arguments are presented against nonspecific hydrophobic interactions as predominant forces responsible for binding.  相似文献   

20.
Russian Journal of General Chemistry - Complexes of the anthracycline antitumor antibiotic daunomycin with biocompatible polymer carriers, poly(vinylpyrrolidone) and poly(ethylene glycol), have...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号