首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
针对红外搜索及跟踪系统中折反式光学系统结构复杂,装调困难及成本高的问题,采用了一种一体式折反结构的透镜。在单片透镜的前后表面进行分区域加工,分别镀上内反射膜和增透膜,形成两个反射面和两个透射面,构成折反一体式透镜。将整个光学系统集成在一片透镜上,降低了系统的复杂度和装调难度,提高了系统的稳定性和可靠性。设计了适用于中波红外的紧凑型成像光学系统,远射比达0.62,结果表明该系统像质优良;各视场光学传递函数均大于0.55,接近衍射极限,并且利用二元衍射光学元件在-40℃~60℃实现光学被动消热差;最后利用单点金刚石车床加工出的样机在不同温度下进行成像实验,结果表明在不离焦的情况下,各温度下成像清晰,满足实际加工和应用需求。  相似文献   

2.
本文利用飞秒激光泵浦-探测质谱和离子成像研究了NO_2分子的超快解离动力学.结果表明NO~+离子的动能释放包含两个部分,分别对应的能量是0.05和0.25 eV,并且指认了它们叫能的解离通道.NO~+离子通道分辨的瞬态测量提供了区分超快解离路径贡献的方法,不同动能释放的离子信号变化曲线可以通过双e指数函数进行拟合.其中衰减时间为0.25 ps的快速变化部分产生于里德堡态的演化.变化较慢的信号部分是山两个竞争的通道产生的,其中一个通道是吸收一个400 nm光子到A~2B_2激发态,它的衰减寿命是30 ps;另一个慢的通道是吸收三个400 nm光子到一个价电子类型的里德堡态,它的衰减寿命是短于7.2 ps.通道和时间分辨的实验测量对于区分分子复杂的超快解离动力学具有非常大的潜力.  相似文献   

3.
编码孔径成像光谱仪光学系统设计   总被引:1,自引:0,他引:1       下载免费PDF全文
裴琳琳  吕群波  王建威  刘扬阳 《物理学报》2014,63(21):210702-210702
本文设计了一种以双Amici棱镜为分光元件的成像光谱系统,该系统主要包括前置望远物镜、编码板、双Amici棱镜、准直镜和成像镜.此类光学系统可以获得很高的衍射效率,相比于狭缝结构的成像光谱系统,该光谱仪为两维空间扩展的视场,无疑增加了设计难度.后期的数据反演算法对一次像面编码板的成像效果过于依赖,基于此,对光学系统的像差校正提出了更高的要求.本文设计、分析了基于双Amici棱镜的成像光谱仪的原理及特点,设计了一套完整的成像光谱系统.前置望远物镜的设计为像方远心,MTF在39线对处,达到0.8,成像质量良好.创新性的将前置望远物镜倒置用做准直系统.全系统各个波长在39线对处的MTF值均在0.65以上.对室外目标景物进行推扫成像,从获得的成像数据判断,本文设计的编码孔径成像光谱仪原理可行,衍射效率高,全视场成像质量良好,全谱段光谱数据可信.  相似文献   

4.
随着成像系统小型化发展,透镜和光阑不再必须是圆形的,方形孔径更有利于收集微成像器件完整孔径的光场。研究了基于方形孔径的宏观傅里叶叠层成像技术,利用成像传感器及其傅里叶域自然的矩形结构,更有效利用方形孔径的合成来提高成像分辨率。数值模拟和实验验证表明:边长和直径相等的方形孔径与圆形孔径相比,方形孔径具有高光通量和宽传递函数的优势,可实现更高的成像分辨率、速度和信噪比。  相似文献   

5.
多色成像作为超分辨成像技术的重要延伸,极大地增强了人们研究亚细胞结构定位与交互关系的能力,从而有助于研究者深入理解细胞内复杂的生命现象与过程。基于单分子定位超分辨显微成像术(SMLM)工作原理的特殊性,已实现了激发依赖、激活依赖、分光依赖等数种有特点的多色成像方法。介绍6种主要的多色单分子定位超分辨显微成像技术,从分色能力、光谱窜扰、数据采集效率等角度分析了各方法的优缺点,并讨论了与多色成像相关的细胞固定方法,帮助研究人员根据自身实验需求选择合适可靠的多色成像手段研究相应的科学问题。  相似文献   

6.
稀疏孔径光学系统成像恢复算法研究   总被引:1,自引:0,他引:1  
朱锡芳  吴峰  陶纯堪 《光子学报》2007,36(12):2319-2324
分析了传统小波阈值去噪方法,给出改进去噪算法.先对稀疏孔径光学系统含噪成像,通过改进小波阈值去噪,提高信噪比,最大程度得到较为理想成像结果,参考修正维纳滤波方法,对去噪结果经过修正维纳滤波实现成像恢复.在实验中,考虑结构非冗余性,利用光学设计软件ZEMAX设计Golay6结构不同填充因子的稀疏孔径光学系统,以本算法进行成像恢复.实验结果表明本文算法优于单独使用维纳滤波或修正维纳滤波方法.  相似文献   

7.
用Spearman相关度分析法研究了3环带纯相位光瞳滤波器的加工质量与超分辨性能之间的显著度关系,并比较了不同环带光瞳滤波器的偏心对超分辨性能的影响.结果表明,环带的偏心与光斑半径、Strehl比的相关度系数均大于0.8,倒圆可使一级旁瓣强度的变化率高达29.04%,因此环带偏心和倒圆是决定元件性能的有效表面质量参量;外层环带偏心对超分辨性能的影响大于内层环带,需要更加严格的公差控制.该方法为微光学元件设计加工中的准确度控制提供了理论依据及可行的技术途径.  相似文献   

8.
目前对于超分辨成像技术的研究主要集中在超分辨重建算法方面,光学系统本身的装调误差对超分辨成像结果的影响尚未见报道。针对这一问题,开展了装调误差对超分辨成像影响的研究,建立了基于数字微镜器件(DMD)的超分辨成像光学系统的基本成像模型,设计了一个工作波段为8~12μm的DMD超分辨成像光学系统,提出了装调误差对超分辨成像质量影响的分析方法。在成像模型中分别引入适当的偏心、倾斜、镜片间隔误差、离焦等装调误差,对超分辨重建结果进行仿真分析,得出了该超分辨成像光学系统装调时的公差范围:该系统在加工装调时X方向总体偏心误差控制在±0.07 mm以内,Y方向总体偏心误差控制在±0.05 mm以内,X方向和Y方向的总体倾斜误差控制在±0.06°以内,总体镜片间隔误差控制在±0.02 mm以内,成像物镜的离焦量控制在±0.04 mm以内,投影物镜的离焦量控制在±0.05 mm以内,在此范围内超分辨成像光学系统可以保证超分辨成像的质量。  相似文献   

9.
光学系统超分辨的光源编码技术   总被引:1,自引:0,他引:1  
本文从Wolf的部分相干理论出发,提出了采用编码光源照明的新的光学像超分辨方法,并用实验证实了这种方法的正确性.它克服了以往超分辨术的一些缺点,为超分辨的实用化研究展现了新的途径.  相似文献   

10.
在重离子癌症治疗中,康普顿相机是一种非常有应用前景的在线监测离子射程的技术。由于康普顿相机使用晶体探测器来确定伽马射线的位置和沉积能量,因此对这些物理量的测量误差会影响康普顿相机的成像分辨率。除了这些测量误差,多普勒展宽效应也会对相机的成像分辨率产生影响。本文使用开源Geant4软件包分别对150和511 keV的伽马射线在几种晶体材料中产生的多普勒展宽效应进行了角分辨模拟。通过对反投影算法的优化和对成像空间中体素的细化,使得康普顿相机的成像分辨率能够达到1.0 mm以上。本工作还基于角分辨标度,推导了一个可快速估计康普顿相机成像分辨率的近似公式。  相似文献   

11.
红外相机共孔径双波段成像光学系统   总被引:1,自引:0,他引:1  
汤天瑾  李岩 《应用光学》2015,36(4):513-518
针对双波段成像系统可以有效提升红外相机的目标探测与识别能力,选择了折反射式双波段系统结构形成,提出共孔径分光路中波红外和长波红外双波段成像光学系统。2个谱段共用卡塞格林主光学系统,采用分色片实现双谱段分光。分光后2个谱段采用相互独立的中继透镜组, 通过二次成像,实现双波段冷光阑100%匹配。2个谱段焦距均为800 mm,工作谱段为3.7 m~4.8 m和7.7 m~10.3 m,中波和长波的F数分别为2.3和2.8,视场角为1.2,该光学系统各谱段在各自乃奎斯特频率处调制传递函数接近衍射极限,可满足实际使用需求。  相似文献   

12.
超分辨成像及超分辨关联显微技术研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
林丹樱  屈军乐 《物理学报》2017,66(14):148703-148703
光学成像系统中有限孔径对光波的衍射,使得光学显微成像技术的分辨率受到"衍射极限"限制而无法进一步提高.自1873年E.K.Abbe提出该问题以来,衍射极限就一直是学术界研究的热点.近年来,随着高强度激光、高灵敏探测器等光电器件研制技术以及新型荧光探针开发等相关领域的快速发展,光学显微技术衍射极限问题的研究迎来了新的契机,超分辨显微成像技术(super-resolution microscopy.SRM)在近十年内取得了令人瞩目的巨大成就.本文从空域和频域角度回顾了衍射极限分辨率的基本原理,并据此对目前常见的各种SRM技术"绕过"衍射极限提高分辨率的机理给予了详解,同时介绍了各类技术的发展动态和研究方向;作为SRM的一个新的重要的发展趋势,本文详细介绍了超分辨关联显微技术的最新研究进展,包括SRM与活细胞实时荧光显微、荧光寿命显微、光谱测量和成像、电子显微、原子力显微、质谱技术等的关联,着重讨论了各类超分辨关联显微技术的作用和意义;最后,对SRM技术和超分辨关联显微技术的未来发展方向进行了展望.  相似文献   

13.
设计了一种可同时实现准直式和发散式太阳光模拟的多功能太阳模拟器光学系统.阐述了光学系统中聚光镜的设计与光学积分器的优化技术.采用Zemax软件中序列与非序列功能结合的方式对光学积分器的参数进行优化,并设计了准直物镜.利用LightTools软件对光学系统进行模拟仿真,结果表明:设计的光学系统实现准直式太阳光模拟功能时,辐照面可达Φ300 mm,且辐照不均匀度优于±6.1%;通过改变准直物镜的位置,发散式太阳光模拟功能时,辐照面可达Φ1 500mm,且辐照不均匀度优于±6.7%.  相似文献   

14.
荧光显微成像技术的生物医学应用离不开荧光染料的设计与开发。有机小分子荧光染料因其易于修饰、生物相容性好、光物理性质优异等特点,在细胞生物成像领域受到了广泛关注。随着超分辨荧光显微镜的发展和技术的进步,使得荧光显微成像突破了光学衍射极限,可以获得更为精准的生物分子学信息,观察纳米尺度下亚细胞器之间的相互作用。根据不同的成像原理,科学家开发出了单分子定位成像技术、受激辐射损耗成像技术、结构光照明技术等超分辨荧光显微技术。这些技术在细胞荧光显微成像领域的应用与发展,同时对有机小分子荧光染料的设计与开发提出了新要求。本文介绍了主流超分辨荧光显微技术的原理,总结已发表的超分辨荧光显微成像荧光染料的结构和光物理性质特点,归纳了其设计要求,旨在为新型荧光染料的设计提供参考。  相似文献   

15.
针对红外搜索及跟踪系统中折反式光学系统结构复杂,装调困难及成本高的问题,采用了一种一体式折反结构的透镜。在单片透镜的前后表面进行分区域加工,分别镀上内反射膜和增透膜,形成两个反射面和两个透射面,构成折反一体式透镜。将整个光学系统集成在一片透镜上,降低了系统的复杂度和装调难度,提高了系统的稳定性和可靠性。设计了适用于中波红外的紧凑型成像光学系统,远射比达0.62,结果表明该系统像质优良;各视场光学传递函数均大于0.55,接近衍射极限,并且利用二元衍射光学元件在-40℃~60℃实现光学被动消热差;最后利用单点金刚石车床加工出的样机在不同温度下进行成像实验,结果表明在不离焦的情况下,各温度下成像清晰,满足实际加工和应用需求。  相似文献   

16.
为了进一步提高超分辨卫星载荷光学系统的空间分辨能力,需对系统杂散光进行抑制,以得到准确的原始图像.通过光线追迹方式,分析了系统杂散光,确认了杂散光的来源.通过Tracepro定量化分析和结构有限元分析,在限制范围内,不断优化、改进遮光罩尺寸及挡光环位置,得到光学系统视场外点源透射比均在10-3以下,验证了该杂散光抑制方案的有效性,为卡塞格林光学系统的工程应用提供参考.  相似文献   

17.
N-乙基吡咯是吡咯分子的一个乙基取代衍生物,它的激发态衰变动力学目前为止很少被研究.本文利用飞秒时间分辨光电子成像的实验方法研究N-乙基吡咯分子S1态的衰变动力学.实验采用241.9和237.7 nm的泵浦激发波长.在241.9 nm激发下,得到5.0±0.7 ps,66.4±15.6 ps和1.3±0.1 ns三个寿命常数.在237.7 nm激发下,得到2.1±0.1 ps和13.1±1.2 ps两个寿命常数.所有寿命常数都归属为S1态的振动态.本文并对不同S1振动态的弛豫机理进行了讨论.  相似文献   

18.
为了突破基底材料的选择局限性,实现成像波段范围内的高质量成像,在环形孔径超薄成像系统引入成像衍射光学元件,设计了以光学塑料聚甲基丙烯酸甲酯(PMMA)为基底材料、焦距为35mm、有效孔径为29 mm的4次反射结构的折衍射混合环形孔径超薄成像系统。该系统倍率色差小于2.2μm,在空间频率为166lp/mm时的MTF值大于0.4,实现了高质量成像。对环形孔径成像系统分别进行了公差分析与热分析,结果表明,在空间频率为166lp/mm时,各视场的子午和弧矢衍射MTF值大于0.2,在温度0℃~40℃时,各视场的子午和弧矢MTF值大于0.28.  相似文献   

19.
稀疏孔径光学系统成像的图像恢复算法研究   总被引:2,自引:1,他引:1  
李波  李艳  李昕 《光子学报》2010,39(2):275-278
提出两种稀疏孔径光学系统成像的图像恢复模型.分析维纳滤波、最小二乘方滤波和极大似然法盲去卷积三种图像恢复算法的适用条件.针对存在噪声干扰的稀疏孔径光学系统,通过实验对比,指出维纳滤波和最小二乘方滤波把相机光学传函当作系统传函,其理论推导能够达到最优.盲去卷积把大气传输函数和相机光学传函作为系统传函进行恢复,其恢复结果优于维纳滤波带入常数K和最小二乘方滤波调整参量结果.  相似文献   

20.
针对焦距为560mm、通光口径为150mm、系统同轴度优于0.008mm的RC光学系统,提出了一种实现其高同轴度的精密装调方法.该系统的承力筒材料为碳/碳,适用于平面加工,对于圆周加工的精度较低,因此采用传统的光学定心加工无法保证其精度要求,而采用光轴替代工装以及立式装调的方法可保证系统较高的同轴度.通过干涉自准检验的方法对系统元件进行进一步精密调整,最终系统的波像差均方根达到0.05λ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号