首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The abstraction of hydrogen and deuterium from 1,2-dichloroethane, 1,1,2-trichloroethane, and two of their deuterated analogs by photochemically generated ground state chlorine atoms has been investigatedin the temperature range 0–95°C using methane as a competitor. Rate constants and their temperature coefficients are reported for the following reactions Over the temperature range of this investigation an Arrhenius law temperature dependence was observed in all cases. Based on the adopted rate coefficient for the chlorination of methane [L.F. Keyser, J. Chem. Phys., 69 , 214 (1978)] which is commensurate with the present temperature range, the following rate constant values (cm3 s?1) are obtained: The observed pure primary, and mixed primary plus α- and β3-secondary kinetic isotope effects at 298 K are k3/k6 = 2.73 ± 0.08, and k1/k2 = 4.26 ± 0.12, respectively. Both show a normal temperature dependence decreasing to k3/k6 = 2.39 ± 0.06 and k1/k2 = 3.56 ± 0.09 at 370 K. Contrary to some simple theoretical expectations, the kinetic isotope effect for H/D abstraction decreases with increasing number of chlorine substituents in the geminal group in a parallel manner to the trend established previously for C1-substitution in the adjacent group. The occurrence of a β-secondary isotope effect, k4/k5, is established; this effect suggests a slight inverse temperature dependence.  相似文献   

2.
The rates of several novel elementary reactions involving ClO, BrO and SO free radicals in their ground states were studied in a discharge-flow system at 295 K, using mass spectrometry. The rate constant k2 was determined from the decay of SO radicals in the presence of excess ClO radicals: The SO + OClO overall reaction has a complex mechanism, with the primary step having a rate constant k5 equal to (1.9 ± 0.7) × 10?12 cm3 sec?1: A lower limit for the rate constant of the rapid reaction of SO radicals with BrO radicals was determined:   相似文献   

3.
The thermal decomposition of SF5O3SF5 in the presence of CO has been investigated between -9.8°C and + 9.9°C. Besides traces of S2F10, equimolecular amounts of SF5O2SF5 and CO2 are formed. The reaction is homogeneous. Its rate is proportional to the pressure of the trioxide and in dependent of the total pressure, the pressure of inert gases and of carbon monoxide: where k = k1∞ = 1016.32±0.40 exp(?25,300 ± 500 cal)/RT sec?1. Consequently, In the presence of oxygen a sensitized CO2 formation is observed. A mechanism is given which explains the experimental results.  相似文献   

4.
NO2 was photolyzed with 2288 Å radiation at 300° and 423°K in the presence of H2O, CO, and in some cases excess He. The photolysis produces O(1D) atoms which react with H2O to give HO radicals or are deactivated by CO to O(3P) atoms The ratio k5/k3 is temperature dependent, being 0.33 at 300°K and 0.60 at 423°K. From these two points, the Arrhenius expression is estimated to be k5/k3 = 2.6 exp(?1200/RT) where R is in cal/mole – °K. The OH radical is either removed by NO2 or reacts with CO The ratio k2/kα is 0.019 at 300°K and 0.027 at 423°K, and the ratio k2/k0 is 1.65 × 10?5M at 300°K and 2.84 × 10?5M at 423°K, with H2O as the chaperone gas, where kα = k1 in the high-pressure limit and k0[M] = k1 in the low-pressure limit. When combined with the value of k2 = 4.2 × 108 exp(?1100/RT) M?1sec?1, kα = 6.3 × 109 exp (?340/RT)M?1sec?1 and k0 = 4.0 × 1012M?2sec?1, independent of temperature for H2O as the chaperone gas. He is about 1/8 as efficient as H2O.  相似文献   

5.
The gas-phase photochlorination (λ = 436 nm) of the 1,1,1,2-C2H2Cl4 has been studied in the absence and the presence of oxygen at temperatures between 360 and 420°K. Activation energies have been estimated for the following reaction steps: The dissociation energy D(CCl3CHCl? O2) ± (24.8 ± 1.5) kcal/mole has also been estimated from the difference in activation energy of the direct and reverse reactions The mechanism is discussed and the rate parameters are compared to those obtained for a series of other chlorinated ethanes.  相似文献   

6.
O(1D), produced from the photolysis of N2O at 2139 Å, reacts with N2O in accord with: We have used the method of chemical difference to obtain an accurate measure of k2/k3 = 0.59 ± 0.01. Furthermore, the quantum yield of production of O(3P), either on direct photolysis or on deactivation of O(1D) by N2O, is less than 0.02 and probably zero.  相似文献   

7.
Analysis is made of reported results on the kinetics and mechanism of ascorbic acid oxidation with oxygen in the presence of cupric ions. The diversities due to methodological reasons are cleared up. A kinetic study of the mechanism of Cu2+ anaerobic reaction with ascorbic acid (DH2) is carried out. The true kinetic regularities of catalytic ascorbic acid oxidation with oxygen are established at 2.7 ≤ pH < 4, 5 × 10?4 ≤ [DH2] ≤ 10?2M, 10?4 ≤ [Cu2+] ≤ 10?3M, and 10?4 ≤ [O2] ≤ 10?3M: where??1 (25°C) = 0.13 ± 0.01 M?0.5˙sec?1. The activation energy for this reaction is E1 = 22 ± 1 kcal/mol. It is found by means of adding Cu+ acceptors (acetonitrile and allyl alcohol) that the catalytic process is of a chain nature. The Cu+ ion generation at the interaction of the Cu2+ ion with ascorbic acid is the initiation step. The rate of the chain initiation at [Cu2+] ± 10?4M, [DH2] ± 10?2M, 2.5 < pH < 4, is where??i,1 (25°C) = (1.8 ± 0.3)M?1˙sec?1, Ei,1 = 31 ± 2 kcal/mol. The reaction of the Cu+ ion with O2 is involved in a chain propagation, so that the rate of catalytic ascorbic acid oxidation for the system Cu2+? DH2? O2 is where??1 (25°C) = (5 ± 0.5) × 104 M?1˙sec?1. The Cu+ ion and a species interacting with ascorbate are involved to quadratic chain termination. By means of photochemical and flow electron spin resonance methods we obtained data characteristic of the reactivities of ascorbic acid radicals and ruled out their importance for the catalytic chain process. A new type of chain mechanism of catalytic ascorbic acid oxidation with oxygen is proposed: .  相似文献   

8.
The reactions of NH(X3Σ) with NO, O2, and O have been studied in reflected and incident shock wave experiments. The source of NH in all the experiments was the thermal dissociation of isocyanic acid, HNCO. Time-histories of the NH(X3Σ) and OH(X2Π) radicals were measured behind the shock waves using cw, narrow-linewidth laser absorption at 336 nm and 307 nm, respectively. The second-order rate coefficients of the reactions: were determined to be: and cm3 mol−1 s−1, where ƒ and F define the lower and upper uncertainty limits, respectively. The branching fraction of channel defined as k3b/k3total, was determined to be 0.19 ± 0.10 over the temperature range of 2940 K to 3040 K.  相似文献   

9.
The reactions of Cl and Br atoms with H2O2 have been studied in the range of 300–350 K using the very-low-pressure-reactor technique. It was found that metathesis to produce HX and HO2 is the only significant process (≤99%). For the reaction of Br k2 (300 K) = 1.3 ± 0.45 × 10?14 and k2 (350 K) = 3.75 ± 1.1 × 10?14 cm3/molecules·s, with an activation energy of 4.6 ± 0.7 kcal/mol. Using an estimated A factor for A2, we find suggesting that a best choice is E2 = 3.9 ± 0.4 kcal/mol. The relation of these values to ΔH (HO2) is discussed.  相似文献   

10.
According to our experiments the bromide ion concentration exhibits in the bromate–ascorbic acid–malonic acid–perchloric acid system three extrema as a function of time. To describe this peculiar phenomenon, the kinetics of four component reactions have been studied separately. The following rate equations were obtained: Bromate–ascorbic acid reaction: Bromate–bromide ion reaction: Bromide–ascorbic acid reaction: Bromine–malonic acid reaction: k4 = 6 × 10?3 s?1, k-4 ≥ 1.7 × 103 s?1, k5 ≥ 1 × 107M?1 · s?1 Taking into account the stoichiometry of the component reactions and using these rate equations, the concentration versus time curves of the composite system were calculated. Although the agreement is not as good as in the case of the component reactions, it is remarkable that this kinetic structure exhibits the three extrema found.  相似文献   

11.
Absolute rate constants were determined for the gas phase reactions of OH radicals with a series of linear aliphatic ethers using the flash photolysis resonance fluorescence technique. Experiments were performed over the temperature range 240–440 K at total pressures (using Ar diluent gas) between 25–50 Torr. The kinetic data for dimethylether (k1), diethylether (k2), and dipropylether (k3) were used to derive the Arrhenius expressions and At 296 K, the measured rate constants (in units of 10?13 cm3 molecule?1 s?1) were: k1 = (24.9 ± 2.2), k2 = (136 ± 9), and k3 = (180 ± 22). Room temperature rate constants for the OH reactions with several other aliphatic ethers were also measured. These were (in the above units): di-n-butylether, (278 ± 36); di-n-pentylether, (347 ± 20); ethyleneoxide, (0.95 ± 0.05); propyleneoxide, (4.95 ± 0.52); and tetrahydrofuran, (178 ± 16). The results are discussed in terms of the mechanisms for these reactions and are compared to previous literature data.  相似文献   

12.
The formation and consumption of CH radicals during shock-induced pyrolysis of a few ppm ethane diluted in argon was measured by a ring-dye laser spectrometer. Absorption-over-time profiles, measured at a resonance line in the Q-branch of the A2Δ − X2Π band of CH at λ = 431.1311 nm, were recorded and transformed into CH concentrations by known absorption coefficients. By adding some hundred ppm of CO2 or O2 to the initial mixtures, the CH concentration profiles were significantly perturbed. Both the perturbed and unperturbed CH concentration profiles have been compared with calculations based on a reaction kinetic model. A sensitivity analysis revealed that the perturbation process was dominated by direct reactions of CH with the added molecules. By fitting calculated to observed CH profiles the following rate coefficients were obtained The experiments were performed in the temperature range between 2500 K and 3500 K. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
The reaction of CF3 radicals with H2O (D2O) has been studied over the range of 533–723 K using the photolysis and the pyrolysis of CF3I as the free radical source. Arrhenius parameters for the reactions where X = H or D, relative to CF3 radical recombination are given by where k/k is in cm3/2/mol1/2·s1/2 and θ = 2.303RT/cal/mol. The activation energy and the primary kinetic isotope effect have been compared with those derived from the BEBO method.  相似文献   

14.
Metastable N2(A3Σu+), υ = 0, υ = 1, molecules are produced by a pulsed Tesla-type discharge of a dilute N2/Ar gas mixture. Rate coefficients for quenching these metastable levels by O2, O, N, and H were obtained by time-resolved emission measurements of the (0, 6) and (1, 5) Vegard–Kaplan bands. In units of cm3/mole · sec at 300°K and with an experimental uncertainty of ±20%, these rate coefficients for N2(A3Σu+) are Within the limits of error these coefficients apply to quenching N2(A3Σu+) υ′ = 1 as well.  相似文献   

15.
Rate constants for the low-pressure unimolecular decomposition of ONBr and ONCl in an argon bath have been determined at temperatures in the vicinity of 1000°K. Both molecules exhibit the usual depression of the observed activation energy below the bond dissociation energy. The Arrhenius expressions obtained are (units of cc mole?1 sec?1): Treatment of the data by the classical RRK theory yields s ? 2.7 ± 1 for ONCl and 3.0 ± 0.6 for ONBr. Coupling the shock tube results for ONCl with lower-temperature data from Ashmore and Burnett [3], one obtains s ? 2.5 ± 0.5 and λ ≈? 1. If it is assumed that s is also 2.5 for ONBr, then one finds the surprising (but tentative) result that λONCl? Ar/λONBr? Ar ≈? 3 to 4.  相似文献   

16.
The kinetics of the gas-phase reaction of CH3F with I2 have been studied spectrophotometrically from 629 to 710 K, and were determined to be consistent with the following mechanism: (1) A least-squares analysis of the kinetic data taken in the initial stages of reaction resulted in where θ = 4.575T/1000 kcal/mol. The errors represent one standard deviation. The experimental activation energy E4 = 30.8 ± 0.2 kcal/mol was combined with the assumption E3 = 1 ± 1 kcal/mol and estimated heat capacities to obtain The enthalpy change at 298 K was combined with selected thermochemical data to derive The kinetic studies of ?HF2 and CH2F2 have been reevaluated to yield These results are combined with literature data to yield the C? H, C? F, and C? Cl bond dissociation energies in their respective fluoromethanes, and the effect of α-fluorine substitution is discussed.  相似文献   

17.
Absolute rate constants were determined for the gas phase reactions of OH radicals with a series of aliphatic alcohols using the flash photolysis resonance fluorescence technique. Experiments were performed over the temperature range 240–440 K at total pressures (using Ar diluent gas) between 25–50 Torr. The kinetic data for methanol (k1), ethanol (k2), and 2-propanol (k3) were used to derive the Arrhenius expressions and At 296 K, the measured rate constants (in units of 10?13 cm3 molecule?1 s?1) were: k1 = (8.61 ± 0.47), k2 = (33.3 ± 2.3), and k3 = (58.1 ± 3.4). Room temperature rate constants for the OH reactions with several other aliphatic alcohols were also measured. These were (in the above units): 1-propanol, (53.4 ± 2.9); 1-butanol, (83.1 ± 6.3) and 1-pentanol, (108 ± 11). The results are discussed in terms of the mechanisms for these reactions and are compared to previous literature data.  相似文献   

18.
The gas-phase photochlorination of perfluorocyclopentene under continuous and intermittent illumination with 4360-Å radiation was studied between 10° and 60°C. The rate constants for the reactions. (3) (4) were measured as k3 = (1.20 + 0.58) × 108 exp (?6.430 ± 177/RT) l·(mole sec) and k4 = (1.86 ± 0.76) × 107 l·(mole sec).  相似文献   

19.
The ultraviolet absorption spectra of chloromethylperoxy and fluoromethylperoxy radicals, CH2ClO2 and CH2FO2, and the kinetics of their respective self reactions have been studied in the gas phase using a flash photolysis technique. The absorption spectra for both radicals were quantified over the wavelength range 210 and 290 nm. The measured absorption cross-sections were used to derive the observed self-reaction rate constants (for reactions 1 and 2) over the temperature range 228–380 K, defined as –d[CH2XO2]/dt = 2k[CH2XO2]2, where X represents Cl or F. The rate constants at 298 K were found to be independent of pressure over the range 25–400 torr N2 with values of k1(298 K) = (3.78 ± 0.45) × 10?12 and k2(298 K) = (3.07 ± 0.65) × 10?12 in units of cm3 molecule?1 s?1. The kinetic data over the complete temperature range are represented by the Arrhenius expressions: where the error limits represent 2σ from linear least squares analysis. These results are discussed with respect to previous measurements of the absorption spectra and reactions of alkylperoxy radicals.  相似文献   

20.
The rate constant for the combination of trichloromethyl radicals in the gas phase has been measured by applying the rotating sector technique to the gas phase carbon tetrachloride–cyclohexane photochemical system. A temperature-independent rate constant, k5, of 3.9 ± 1.0 × 1012 cc mole?1 sec?1 was found. Arrhenius parameters for the reaction were found to be given by the expression log k4 = 11.79 – (10,700/2.3 RT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号