首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

为了研究瓦斯浓度对瓦斯爆炸反应动力学特性的影响,利用定容反应器模型,对不同瓦斯浓度情况下的瓦斯爆炸反应进行了模拟研究。研究结果表明:随着初始瓦斯浓度的增加,瓦斯爆炸的最终温度先升后降,压力逐渐升高;·OH、H·和O·自由基摩尔分数先升后降;残余的CH4摩尔分数缓慢增加,O2摩尔分数缓慢减少至零。瓦斯爆炸的最佳反应浓度比化学计量浓度要高,大约在10%~12%之间,此时爆炸后体系中温度达到最大值。在化学当量比情况下,对甲烷和氧气的消耗、自由基(O·和H·)的生成起促进作用的关键基元反应步为R32、R38、R85、R118、R119、R155、R156、R157;对甲烷和氧气的产生、自由基(O·和H·)的消减起促进作用的关键基元反应步为R53、R158。

  相似文献   

2.
夏煜  程扬帆  胡芳芳  王瑞  朱守军  沈兆武 《高压物理学报》2022,36(6):065201-1-065201-9

为了揭示固体抑爆剂对乙炔-空气预混气体爆炸的抑爆效果,采用20 L球形爆炸测试系统,研究了典型固体抑爆剂SiO2、Al(OH)3和NaHCO3对乙炔-空气预混气体爆炸特性的影响。结果表明:低粉体浓度(300 g/m3以下)的SiO2对乙炔-空气的爆炸威力具有促进作用,而高粉体浓度的SiO2则具有显著的抑制作用;SiO2、Al(OH)3和NaHCO3 3种固体抑爆剂对乙炔-空气的抑爆效果依次增强;SiO2和Al(OH)3分别通过颗粒自身和分解吸热(生成Al2O3和H2O)来降低乙炔-空气的爆炸威力,而NaHCO3分解会产生Na2CO3、H2O和CO2,兼具气、固、液三相的抑爆特点,因而对乙炔-空气预混气体的抑爆效果最好。

  相似文献   

3.

为了解煤矿井下气体爆炸作用的规律,实验研究了不同环境湿度条件下的气体爆炸极限和爆炸压力,分析了水蒸气组分对瓦斯爆炸压力的抑制作用。研究结果表明:预混气体由干燥向水蒸气饱和状态转变时,瓦斯爆炸下限上升0.11%,爆炸上限下降0.31%,爆炸极限范围缩小,相应的最大爆炸压力和最大压力上升速率分别由0.802 MPa和23.38 MPa/s衰减到0.746 MPa和18.59 MPa/s,预混气体中的水蒸气起到抑制瓦斯爆炸的作用效果。

  相似文献   

4.
为了给瓦斯爆炸后煤尘二次爆炸的深入研究提供理论依据,应用计算流体力学方法,对煤矿巷道内瓦斯爆炸的瞬态流场进行了数值模拟,得到了冲击波与高温气流流动的时空关系,并借助实验对数值方法进行了验证。研究表明:在瓦斯爆炸后的一定时间内,近场区域和远场的部分区域极有可能引发煤尘二次爆炸。给出了可能发生煤尘二次爆炸的区域随瓦斯区长度的函数关系式,以及远场中峰值温度和峰值超压到达时间的间隔随轴向距离和瓦斯区长度的分布特性。  相似文献   

5.
6.
董琪  韦灼彬  唐廷  张宁 《高压物理学报》2018,32(2):024102-1-024102-9

考虑水面和水底的影响, 采用ALE算法构建浅水爆炸全耦合模型, 运用LS-DYNA对不同爆炸深度下的浅水爆炸进行数值模拟, 通过与COLE经验公式对比, 验证了模拟的可靠性。考察了不同爆炸深度下气泡脉动的形态及荷载特性, 并分析了爆炸深度对浅水爆炸气泡脉动的影响。结果表明:随着爆炸深度增大, 气泡脉动受自由面和重力的影响减小, 受静水压力和边界面的影响增大, 气泡收缩时产生的射流方向由向下逐渐转变为向上, 气泡最大半径到达时间和脉动周期亦增大; 比冲量随水深增大而增长的趋势先增强后减弱, 当爆炸深度靠近水底时, 荷载分布基本趋于一致, 但荷载沿传播距离的衰减速度随着爆炸深度增大而变缓; 危险爆炸深度随测量深度增大而增大的趋势先陡后缓, 至趋近水底面后基本不再变化。

  相似文献   

7.
《工程热物理学报》2021,42(7):1879-1886
为了探明瓦斯/煤尘耦合爆炸灾害强化的产生机制,采用20 L球、高速纹影和PIV对瓦斯/煤尘爆炸初期复合火焰加速特性、压力变化进行了实验研究,并对其爆炸瞬间的流场特征进行了分析。结果表明:相比甲烷/空气爆炸,同一甲烷浓度下,瓦斯/煤尘爆炸初期火焰传播速度稍有降低,焰胞状结构减少,火焰上浮现象几乎消失;马克斯坦长度随甲烷浓度的增大而减小且均为正值,表明爆炸初期复合火焰发展趋于稳定,有利于煤尘粒子参与燃烧反应。甲烷浓度接近最佳当量浓度、煤尘粒径越小或煤尘质量浓度增加接近最佳浓度时能诱发复合火焰加速,导致爆炸威力增强。低浓度瓦斯/煤尘复合体系对煤尘质量浓度的提高更敏感,而随着煤尘浓度的增大,甲烷浓度对瓦斯/煤尘复合体系的影响逐渐降低。初始爆炸强度对瓦斯/煤尘复合体系有重要影响。9%瓦斯/煤尘爆炸体系由于初始爆炸强度高,复合火焰中心负压使多数煤尘粒子做向心运动,火焰前锋周围聚集了大量煤尘粒子,同时在火焰前锋周围形成的大量方向相反的大涡量旋涡,促进了煤尘表面与氧气的快速接触,加剧了燃烧反应。研究结果将为瓦斯/煤尘耦合爆炸灾害防治提供指导。  相似文献   

8.

为进一步研究影响粉尘爆炸特性参数的因素,在5 L柱形密闭爆炸容器中,以食用玉米淀粉为试样,利用高压放电火花点火,并通过压力采集系统记录容器内压力的变化,研究了不同吹粉压力下,点火延迟时间对粉尘爆炸压力参数的影响,并对实验现象进行了理论分析。实验结果表明:点火延迟时间对粉尘爆炸压力和压力上升速率影响显著;吹粉压力存在一个临界值,当吹粉压力大于临界值时,存在一个最佳点火延迟时间,使得爆炸压力峰值和压力上升速率峰值最大,且随着吹粉压力的增大,粉尘爆炸的最佳点火延迟时间缩短;当吹粉压力小于临界值时,点火延迟时间越长,粉尘爆炸压力越小。

  相似文献   

9.
白刚  周西华  宋东平 《高压物理学报》2019,33(4):045203-1-045203-8

针对煤矿火区封闭过程中常发生的瓦斯爆炸问题,运用20 L爆炸装置,实验研究了不同环境温度(25~200 ℃)和CO浓度(1%~10%,体积分数)条件下瓦斯的爆炸极限和最大爆炸压力。结果表明:单因素可燃性气体CO体积分数升高,瓦斯爆炸上限、下限均下降,爆炸极限范围变宽;温度升高,爆炸上限升高,下限下降;常压条件下,随着温度升高,爆炸上限与初始温度呈二次函数关系变化,爆炸下限与初始温度呈对数关系变化;瓦斯爆炸上限与下限爆炸压力随着初始温度升高均降低,随着CO体积分数升高均升高。多因素高温与CO气体耦合作用下,瓦斯爆炸上限升高,下限下降,瓦斯爆炸危险性增加;初始温度和CO气体对爆炸极限的耦合影响比单一因素的影响大,对爆炸上限的影响更为显著。

  相似文献   

10.

为了研究TNT炸药的后燃反应,采用水下爆炸实验方法和一种增强炸药后燃反应的实验装置,对TNT炸药的能量输出结构进行了研究,计算得到了不同气体氛围下的后燃反应能量。采用Miller能量释放模型,对后燃反应实验结果进行了数值模拟。结果表明:在实验装置中充入空气或氧气,可明显增强TNT炸药的后燃反应能量输出,实测的后燃反应能量随着氧含量的增加而增大,在实验研究范围内后燃反应能量的最大值达到4.90 kJ/g,但并没有达到后燃反应能量的理论最大值;冲击波压力时程曲线的数值模拟结果与实验结果基本一致,证明了Miller能量释放模型的可行性。

  相似文献   

11.
刘洋  李展  方秦  王森佩  陈力 《高压物理学报》2021,35(5):055201-1-055201-15

长直空间燃气爆炸超压及其振荡将对人员和结构安全产生不利影响。为减轻燃气爆炸危害,基于CFD软件FLACS建立了长直管道空间燃气爆炸数值模型,并对模型进行了验证。利用已验证的数值模型,研究了添加不同体积分数CO2、N2和水蒸气的化学当量比CH4/空气混合气体的爆炸,讨论了惰性气体和水蒸气的体积分数对爆炸超压及其振荡的影响,并对比了3种气体的抑爆效果。结果表明:CO2、水蒸气和N2的体积分数每增加10%,密闭管道气体爆炸的最终超压将分别下降81、47、65 kPa,尾端泄爆管道分别下降24、25、20 kPa,3种气体的体积分数分别为25%、26%、30%时,爆炸被完全抑制;CO2、水蒸气和N2均能有效抑制爆炸超压的振荡,压力振幅和压力振荡频率均随添加气体体积分数的增加而减小;CO2对爆炸超压及其振荡的抑制效果最好,水蒸气次之,N2最弱,这与3种气体的物理特性及其抑爆机理的差异有关。

  相似文献   

12.
孙建军  李如江  万清华  张明  杨玥  孙淼 《高压物理学报》2018,32(5):055106-1-055106-8

为了得到爆炸反应装甲的防护包络(即爆炸反应装甲与射流的接触面上不同弹着点处的抗弹性能),应用三维有限元分析软件LS-DYNA,对弹着点处于不同位置时反应装甲的抗弹性能进行数值仿真,并开展对比实验。结果表明,仿真结果与实验结果吻合较好。不同弹着点处的抗弹性能存在较大差异,抗弹性能最优区并非反应装甲的对称中心或其附近区域,而是距反应装甲底端22.7倍及46.9倍射流直径处;反应装甲的有效抗弹区域约占65.8%,有效抗弹区内的抗弹性能较边界区提高约37.5%,反应装甲下部的防护效能较上部好。

  相似文献   

13.
为探索氢气爆炸防治新技术,开发新型阻隔防爆材料,开展了抗磁性铝丝和铁磁性镍丝对预混氢气-空气爆炸压力影响实验,利用CHEMKIN-PRO软件对氢气爆炸过程中的反应路径和温度敏感性变化进行模拟。实验结果表明,两种金属丝对氢气-空气混合气体爆炸具有双重作用:当混合气体中氢气的体积分数低于20%时,金属丝材料抑制氢气爆炸,且材料填充量越大,抑制作用越强;当混合气体中氢气的体积分数高于25%时,两种金属丝促进氢气爆炸,且填充量越大,促进作用越强。在促进爆炸阶段,镍丝的促进效果弱于铝丝;在抑制爆炸阶段,镍丝的抑爆效果优于铝丝。模拟结果表明,R2对氢气的生成速率影响最大,R1对氢气及爆炸过程中的温度影响最大,影响温度敏感性变化的主要基元反应对爆炸均具有促进作用。通过实验和数值模拟综合分析,揭示了不同磁性金属丝对氢气爆炸的影响机理,可为氢气爆炸防治和开发新型阻隔防爆材料提供理论指导。  相似文献   

14.
为探究复杂巷道内多爆源瓦斯爆炸传播特性及热冲击动力学机制,运用计算流体力学软件Fluent,以H型巷道为模型,在巷道内设置同侧、相对、对角3种双爆源布置方式。研究发现:巷道内的2处爆源同时起爆后,前驱冲击波沿巷道未燃区传播,当两股冲击波相遇时,压力叠加,冲量抵消,在压力叠加区火焰传播受阻,导致火焰传播速度放缓甚至反向;相较于单爆源爆炸,双爆源工况中导致巷道内特定区域如联络巷、岔口中心及其边壁的压力更高;同侧和对角布置工况下的压力极值区出现在巷道封闭端,相对布置工况下的压力极值区出现在分岔口中心处。  相似文献   

15.
为了得到爆炸反应装甲的防护包络(即爆炸反应装甲与射流的接触面上不同弹着点处的抗弹性能),应用三维有限元分析软件LS-DYNA,对弹着点处于不同位置时反应装甲的抗弹性能进行数值仿真,并开展对比实验。结果表明,仿真结果与实验结果吻合较好。不同弹着点处的抗弹性能存在较大差异,抗弹性能最优区并非反应装甲的对称中心或其附近区域,而是距反应装甲底端22.7倍及46.9倍射流直径处;反应装甲的有效抗弹区域约占65.8%,有效抗弹区内的抗弹性能较边界区提高约37.5%,反应装甲下部的防护效能较上部好。  相似文献   

16.
刘迎彬  石军磊  胡晓艳  孙淼  张明  段晓畅 《高压物理学报》2018,32(4):045105-1-045105-8

为得到干扰聚能射流能力更好的爆炸反应装甲,在经典爆炸反应装甲的基础上,设计了一种双层楔形飞板爆炸反应装甲。利用ANSYS/LSDYNA-3D仿真软件对3种不同方案进行了模拟计算,分别对各方案中飞板飞行形态、逃逸射流特性、射流的动能变化以及聚能射流对靶板的侵彻深度进行了分析。结果表明:夹层炸药引爆后,楔形飞板在向外飞出的同时具有一定的旋转特征,合理的摆放结构能够增大飞板与射流的作用面积;聚能射流在穿过反应装甲后,动能急剧下降,穿深能力降低,方案二聚能射流侵彻深度最浅,方案三次之,方案一最深,表明方案二具有良好的防护效果。对楔形飞板的研究丰富了爆炸反应装甲的结构设计,为反应装甲的进一步研究提供了理论参考。

  相似文献   

17.
18.
从工业安全角度出发,在5 L密闭容器中进行了环境湿度(40%和88%)对环氧丙烷蒸气爆炸特性参数影响的实验研究。研究结果表明,在环氧丙烷最佳蒸气浓度附近,湿度使最大爆炸压力明显下降,在爆炸极限浓度附近影响不明显;湿度对7.0%最佳体积浓度环氧丙烷蒸气的最大压力上升速率影响最为明显,其它浓度影响不明显;环氧丙烷蒸气最大爆炸温度和最大爆炸温度上升速率受环境湿度影响相对较小。  相似文献   

19.
煤粉再燃燃烧含氮组分转化机理的敏感性分析   总被引:1,自引:0,他引:1  
本文以GRI 3.0数据库为基础,结合CHEMKIN模块软件中敏感性分析的方法对煤粉再燃燃烧过程进行了数值模拟研究.通过对整个全模型反应方程进行分析,可以把整个反应机理模型主要分为碳氢组分转化反应机理和含氮组分转化反应机理两大类.本文重点对含氮组分转化反应机理进行了分析.在模拟的基础上,对含氮组分HCN、HNCO、NHt、NCO等转化反应进行了分类,系统地讨论了燃烧过程中含氮组分转化反应对NO的敏感性分析,清晰地揭示了含氮组分生成与还原NO的途径以及作用大小,为实际超细煤粉再燃燃烧技术提供了一定的理论依据.  相似文献   

20.
冯凇  饶国宁  彭金华  王伯良 《高压物理学报》2018,32(3):035204-1-035204-8

为了研究温压炸药的后燃反应,采用双层容器充气装置,通过水下爆炸实验,计算了温压炸药的冲击波能、气泡能。通过对温压炸药的水下爆炸能量输出结构的研究,计算得到了不同气体氛围下的后燃反应释放能量。作为对比参照,在相同实验条件下,对TNT进行同等实验研究,结果表明:在2.5 MPa氧气环境下,铝粉含量为40%时,温压炸药的比冲击波能最大,当铝粉含量为50%时,温压炸药的比气泡能与总比能量最大,分别为同等实验条件下1.99倍、1.62倍、1.55倍TNT当量;随着气体中含氧量的增大,后燃效应增强,TNT在氧气中的后燃值是空气中的1.94倍,温压炸药在氧气中的后燃值是空气中的2.70倍。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号