首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent technical advances in biorecognition engineering and microparticle fabrication enabled us to develop a single-step purification process using magnetic particles (MPs). The process is simple, efficacious, easy to automate, and economical. The method immobilizes the ligand molecule in a particular orientation on commercial MPs that have surface carboxyl groups. Mouse IgG and anti-mouse IgG antibody were the model capture and ligand molecules for this study. The immunobinding efficacy of anti-mouse IgG antibody using "oriented immobilization" was compared with the efficacy of a conventional amine-coupling system that results in random orientation and of another standard method, the biotin-streptavidin system. The oriented immobilization was accomplished by oxidizing the sugar moiety in the CH(2) domain of the antibody's Fc and covalently conjugating the moiety to the hydrazine-coated MP. The specific binding affinity of the oriented immobilization process was about 2.5 times that of the amine-coupling system, and selectivity from a binary mixture was about 2 times greater for the oriented immobilization method. Results were nearly identical for the biotin-streptavidin system and the oriented immobilization system, matching the calculated binding stoichiometry between mouse IgG and anti-mouse IgG antibody. The binding improvement over the amine-coupling system shown by assay was confirmed by a separate surface plasmon resonance experiment. In summary, the oriented immobilization method was as effective as the streptavidin-biotin system, yet simpler and cost-effective.  相似文献   

2.
Biointerfaces that limit nonspecific adhesion of serum proteins have been developed by relying solely on cross-linked hydrogels. In addition to being characterized for adhesion of serum proteins, immunoassay sensitivity was also investigated through a sandwich assay for rhIL-1ra. Among the compositions developed, the optimal surface is comprised of pre-cross-linked carboxymethylcellulose (CMC) and polyethyleneimine (PEI) overlaid on a cross-linked layer of poly(ethylene glycol) (PEG) and PEI and employs an anti-IgG Fc specific ligand for oriented antibody immobilization; viscoelastic modeling provides a thickness estimate of 5 nm for the hydrogel alone, rising to 33 nm after the deposition of antibodies. Alternate compositions employing a Protein A ligand and PEG at the exposed surface of the biointerface were disfavored due to an 8-fold increase in serum adhesion and retarded immobilization kinetics, respectively. Through the rapid deposition provided by hydrogels, construction of the entire biointerface, including receptor immobilization, can be completed in 1 h. Based on QCM-D measurements, estimated nonspecific serum adsorption using these compositions is as low as 1.1 ng/mm2. The immunoassay as developed requires 10 min, providing a detection limit of 500 ng/mL rhIL-1ra in 25% human serum using only 5 microg of the secondary antibody.  相似文献   

3.
This paper reports a new flow-through fluoroimmunosensor, the function of which is based on antibodies immobilized on an inmunoreactor of controlled-pore glass (CPG), for determination of digoxin, used in the treatment of congestive heart failure and artery disease. The immunosensor has a detection limit of 1.20 microg L(-1) and provides high reproducibility (RSD=4.5% for a concentration of 0.0025 mg L(-1), and RSD=6.7% for 0.01 mg L(-1)). The optimum working concentration range was found to be 1.2 x 10(-3)-4.0 x 10(-2) mg L(-1). The lifetime of the immunosensor was about 50 immunoassays; if stored unused its lifetime can be extended to three months. A sample speed of about 10-12 samples per hour can be attained. Possible interference from substances with structures similar to digoxin (morphine, heroin, tebaine, codeine, pentazocine and narcotine) was investigated. No cross-reactivity was seen at the highest digoxin: interferent ratio studied (1:100). The proposed fluoroimmunosensor was successfully used to determine digoxin concentrations in human serum samples.  相似文献   

4.
A newly developed electrochemical method--Elimination Voltammetry with Linear Scan (EVLS)--has been applied to the electrochemical study of nucleic acids (NAs) on a silver electrode. Using the linear combination of the currents measured at different scan rates, the EVLS is capable of eliminating one or two selected particular currents. It was shown that the elimination function conserving the reversible diffusion current and eliminating the charging and kinetic currents provides the significant increase of voltammetric signals of DNA. Due to the high sensitivity and resolution power, the EVLS can contribute to study behaviour of nucleic acids on the charged interface and can be applied to nucleic acid analyses and the development of DNA sensors.  相似文献   

5.
Um HJ  Kim M  Lee SH  Min J  Kim H  Choi YW  Kim YH 《Talanta》2011,84(2):330-334
Using quartz crystal microbalance (QCM) as an immunosensor, this work investigates the contribution of a cyclic voltammetry (CV) on the proper immobilization of antibodies with the aim of enhancing its target recognition and binding ability. Primarily, CV in the range of −0.1 to 0.9 V was applied to form a layer of poly-(2-cyano-ethylpyrrole) (PCEPy) on gold quartz crystal electrode. Then the efficiencies of antibodies (anti-IgG, AIgG) immobilized electrochemically with CV applied in 0-0.65 V were compared to those immobilized via physical adsorption, by observing relative affinity towards AIgG-Fab and AIgG-Fc fragments. The results showed antibody-AIgG-Fab interaction could be enhanced about 4 times when CV is applied (11.2 ± 1.3 vs 41.6 ± 3.4 relative fluorescence unit). On the contrary, physisorbed antibodies showed a higher degree of affinity towards AIgG-Fc indicating inappropriate orientations of physisorbed antibodies. AIgG immobilized PCEPy-gold QC electrode was characterized further for its sensitivity towards a new target bovine albumin with both a QCM and fluorescence measurement. Such electrode exhibited a good sensitivity as well as a large linear dynamic range, from 0.4 μg/ml to 1.0 μg/ml and from 0.5 μg/ml to 10.0 μg/ml, at QCM and fluorescence measurement, respectively.  相似文献   

6.
Pei R  Cui X  Yang X  Wang E 《Talanta》2000,53(3):481-488
A surface plasmon resonance biosensor has been used to determine antibody activity in serum. As a model system, the interaction of mouse IgG and sheep anti-mouse IgG polyclonal antibody was investigated in real time. The factors, including pH value, ionic strength, protein concentration, influencing electrostatic adsorption of mouse IgG protein onto carboxylated dextran-coated sensor chip surface, were studied. The procedures of mouse IgG protein immobilization and immune reaction were monitored in real time. The regeneration effect using the different elution reagents was also investigated. The same mouse IgG immobilized surface can be used for 100 cycles of binding and elution with only 0.38% loss per regeneration in reactivity. The results show that the surface plasmon resonance biosensor is a rapid, simple, sensitive, accurate and reliable detection technique for real-time immunoassay of antibody activity. The assay allows antibodies to be detected and studied in their native form without any purification.  相似文献   

7.
Cui X  Yang F  Sha Y  Yang X 《Talanta》2003,60(1):53-61
A surface plasmon resonance (SPR) biosensor was used for the first time to determine the concentration of ferritin in both HBS-EP buffer and serum. The monoclonal antibody was immobilized on the carboxymethyl dextran-modified gold surface by an amine coupling method. The interaction of antibody with antigen was monitored in real-time. The signal was enhanced by sandwich amplification strategy to improve the sensitivity and specificity of the immunoassay, especially in serum. The linear range of the assay in serum is over 30-200 ng ml−1 with the detection limit of 28 ng ml−1. The sensitivity, specificity, and reproducibility of the assay are satisfactory. The analyte and enhancement antibody-binding surface could be regenerated by pH 2.0 glycine-HCl buffer and the same antibody-immobilized surface could be used for more than 50 cycles of ferritin binding and regeneration.  相似文献   

8.
A novel approach appropriate for rapid separation and immobilization of a single cell by concomitantly utilizing laser manipulation and locally thermosensitive hydrogelation is proposed in this paper. We employed a single laser beam as optical tweezers for separating a target cell and locating it adjacent to a fabricated, transparent micro heater. Simultaneously, the target cell is immobilized or partially entrapped by heating the thermosensitive hydrogel with the micro heater. The state of the thermosensitive hydrogel can be switched from sol to gel and gel to sol by controlling the temperature through heating and cooling by the micro heater. After other unwanted cells are removed by the high-speed cleaning flow in the microchannel, the entrapped cell is successfully isolated. It is possible to collect the immobilized target cell for analysis or culture by switching off the micro heater and releasing the cell from the entrapment. We demonstrated that the proposed approach is feasible for rapid manipulation, immobilization, cleaning, isolation and extraction of a single cell. The experimental results are shown here.  相似文献   

9.
Antibody immobilization strategies (random, covalent, orientated and combinations of each) were examined to determine their performance in a surface plasmon resonance-based immunoassay using human fetuin A (HFA) as the model antigen system. The random antibody immobilization strategy selected was based on passive adsorption of anti-HFA antibody on 3-aminopropyltriethoxysilane (APTES)-functionalized gold (Au) chips. The covalent strategy employed covalent crosslinking of anti-HFA antibody on APTES-functionalized chips using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC) and sulfo-N-hydroxysuccinimide (SNHS). The orientation strategy used passive adsorption of protein A (PrA) on Au chips, with subsequent binding of the anti-HFA antibody in an orientated fashion via its fragment crystallisable (Fc) region. In the covalent-orientated strategy, PrA was first bound covalently, to the surface, which in turn, then binds the anti-HFA antibody in an orientated manner. Finally, in the most widely used strategy, covalent binding of anti-HFA antibody to carboxymethyldextran (CM5-dextran) was employed. This immobilization strategy gave the highest anti-HFA antibody immobilization density, whereas the highest HFA response was obtained with the covalent-orientated immobilization strategy. Therefore, the covalent-orientated strategy was the best for SPR-based HFA immunoassay and can detect 0.6-20.0 ng/mL of HFA in less than 10 min.  相似文献   

10.
11.
Fry DR  Bobbitt DR 《Talanta》2001,55(6):1195-1203
Optical fiber (OF) sensors are often limited by the immobilization technique used to associate a specific sensing ligand with the OF surface. This is particularly true when the ligand is biologically active as, for example, in the case of immobilized haptens or antibodies. The dynamic modification protocol is a regenerable and experimentally simple way to immobilize a variety of sensing molecules on an OF surface. Furthermore, the protocol is immune to hydrolysis and not limited by diffusion through a membrane or sol–gel. In this publication the approach is extended by immobilizing the hydrophobic hapten (octadecyl 6-(2,4 dinitrophenyl)aminohexanoic acid) as a means to prepare an OF sensor for antibodies specific for 2,4 dinitrophenyl (DNP). The LOD for anti-DNP is 0.5 nanomolar and the Kapparent is 1.0±0.2×106. Nonspecific antibody adsorption is problematic in this sensing approach and was found to limit the quantitative capabilities of the sensor. However, time discrimination can be used to allow the nonspecific antibody to desorb prior to measurement thus minimizing the influence of nonspecific binding on sensor performance.  相似文献   

12.
《Supramolecular Science》1995,2(3-4):155-160
The reversible oriented immobilization of proteins on solid surfaces is a prerequisite for the investigation of molecular interactions at interfaces or the construction of supramolecular assemblies. We demonstrate a generally applicable method using a synthetic chelator thioalkane which can self-assemble on a gold surface via its thiol group. It exposes its nitrilotriacetic acid group which serves as a chelator for transition metal ions. Reversible binding of a Fab fragment modified with a C-terminal hexahistidine extension was monitored in situ using surface plasmon resonance. The directed immobilization of proteins on surfaces opens new ways for structural investigations of proteins and the development of biosensors.  相似文献   

13.
Immobilizing proteins on a solid surface in a site‐specific orientation and maintaining their bioactivity are crucial to the construction of high‐performance immunoassays. In this study, an affinity ligand for polystyrene (PS) surface screened from a phage display peptide library, named Lig1, was genetically fused to the N/C‐terminus of chimeric antigen HCV that could be recognized by specific antibodies against hepatitis C virus (HCV). Immunoassay characteristics of lig1‐fused HCVs immobilized on PS surface were compared to that of original HCV in both direct and indirect enzyme‐linked immunosorbent assay (ELISA). The results indicated that HCV‐Lig1 (Lig1 fused to HCV C‐terminus) was preferentially adsorbed on PS surface in a site‐oriented manner and would expose specific antibody‐binding sites well, which resulted in a substantial enhancement of detection sensitivity. AFM images showed that, compared to the original one, HCV‐Lig1 was arranged on PS surface in an ordered state and its conformational and steric distortions induced during the interfacial binding process were much slighter. As long as the specific epitope of a coating antigen is not located on both its N and C‐terminus, the ligand fusion approach could be an ideal strategy for site‐oriented protein immobilization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A method combining immunomagnetic separation (IMS) and surface-enhanced Raman scattering (SERS) was developed to enumerate Escherichia coli (E. coli). Gold-coated magnetic spherical nanoparticles were prepared by immobilizing biotin-labeled anti-E. coli antibodies onto avidin-coated magnetic nanoparticles and used in the separation and concentration of the E. coli cells. Raman labels have been constructed using rod shaped gold nanoparticles coated with 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) and subsequently with a molecular recognizer. Then DTNB-labeled gold nanorods were interacted with gold-coated magnetic spherical nanoparticle-antibody-E. coli complex. The capture efficiency and calibration graphs were obtained and examined in different E. coli concentrations (10(1)-10(7) cfu mL(-1)). The correlation between the concentration of bacteria and SERS signal was found to be linear within the range of 10(1)-10(4) cfu mL(-1) (R(2) = 0.992). The limit of detection (LOD) and limit of quantification (LOQ) values of the developed method were found to be 8 and 24 cfu mL(-1), respectively. The selectivity of the developed immunoassay was examined with Enterobacter aerogenes, Enterobacter dissolvens, and Salmonella enteriditis which did not produce any significant response. The ability of the immunoassay to detect E. coli in real water samples was also investigated and the results were compared with the experimental results from plate-counting methods. There was no significant difference between the methods that were compared (p > 0.05). This method is rapid and sensitive to target organisms with a total analysis time of less than 70 min.  相似文献   

15.
Homogeneous immunoassays using (red) gold nanoparticles represent an attractive detection scheme because of the option of photometric readout. We have applied oriented immobilization of hen egg immunoglobulin Y (IgY) on gold nanoparticles when developing a homogeneous immunoassay for human IgG. In oriented immobilization, as opposed to random immobilization, the antigen binding capabilities of the antibodies are retained. It is shown that such immunoassay has significantly better sensitivity in comparison with methods based on conventional immobilization of affinity-purified antibodies. It is also shown that hen egg IgY is better suited than rabbit antibodies, because much more antibody can be immobilized on gold nanoparticles without any destabilization, probably because of the more acidic nature of these antibodies. In addition, hen egg IgY can be supplied in higher quantity and can be prepared more easily than IgG from rabbits. Bleeding and slaughtering of animals is not needed. The assay presented here has a wide detection range (30–500?ng?.mL?1) and a limit of detection as low as 30?ng.mL?1 of human IgG.
Figure
Nanoparticles are treated by thiol for formation of monolayer with exposed NH2 groups. IgY molecule is oxidized by periodate for formation of aldehyde group in Fc fragment. Consequent addition of such antibodies to gold nanoparticles results in binding of IgY molecules to gold nanoparticles via Fc fragment providing oriented immobilization.  相似文献   

16.
Chemical surface patterning can be an incredibly powerful tool in a variety of applications, as it enables precise spatial control over surface properties. But the equipment required to create functional surface patterns—especially “grayscale” patterns where independent control over species placement and density are needed—is often expensive and inaccessible. In this work, we leveraged equipment and methods readily available to many research labs, namely 3D printing and electroblotting, to generate controlled grayscale surface patterns. Three-dimensional-printed molds were used to cast polyacrylamide hydrogels with regions of variable polymer density; regions of low polymer density within the hydrogels served as reservoirs for proteins that were later driven onto a target surface using electrophoresis. This mechanism was used to deposit grayscale patterns of fluorescently labeled proteins, and the fluorescent intensity of these patterns was measured and compared to a theoretical analysis of the deposition mechanism.  相似文献   

17.
Dual polarization interferometry (DPI) is used for a detailed study of antibody immobilization with and without orientation control, using prostate specific antigen (PSA) and its antibody as model. Thiol modified DPI chips were activated by a heterobifunctional cross-linker (sulfo-GMBS). PSA antibody was either directly immobilized via covalent binding or coupled via the Fc-fragment to protein G covalently attached to the activated chip. The direct covalent binding leads to a random antibody orientation and the coupling through protein G leads to an end-on orientation. Ethanolamine (ETH) was used to block remaining active sites following the direct antibody immobilization and protein G immobilization. A homobifunctional cross-linker (BS3) was used to stabilize the antibody layer coupled on protein G. DPI provides a real-time measurement of the stepwise molecular binding processes and gives detailed geometrical and structural values of each layer, i.e., thickness, mass, and density. These values evidence the end-on orientation of closely packed antibody on protein G layer and reveal structural effects of ETH blocking/deactivation and BS3 stabilization. With the end-on immobilized antibody, PSA at 10 pg/mL can be detected by DPI through a sandwich complex that satisfies the clinical requirement (assuming <30 pg/mL as clinically safe). However, the randomly immobilized antibody failed to detect PSA at 1 ng/mL. In a parallel study using surface plasmon resonance (SPR) spectroscopy, random and end-on antibody immobilization on streptavidin-modified gold surface was evaluated to further validate the importance of antibody orientation control. With the closely packed antibody layer on protein G surface, SPR can also detect PSA at 10 pg/mL.  相似文献   

18.
A direct and highly sensitive piezoelectric immunoassay for Toxoplasma gondii-specific IgG (Tg-IgG) in infected rabbit serum (IRS) has been proposed on the basis of a new biomolecular immobilization strategy incorporating silica nanoparticles/matrix and a plasma-polymerized film (PPF) of n-butyl amine. SiO2 nanoparticles prepared by using a water-in-oil microemulsion route were chemically activated and then used to conjugate T. gondii antigens (TgAg) onto the PPF-deposited crystal. Compared to the commonly applied methods, i.e. the glutaraldehyde (GLU) cross-linking procedure, this strategy could allow for antigens immobilized with higher loading amount and better retained immunoactivity, as demonstrated by the immunofluorescence measurements. Moreover, a mild reduction agent 2-mercaptoethanol (2-ME) which can deactivate T. gondii-specific IgM in the analytical samples was utilized to achieve the direct determination of Tg-IgG. Some applications including an optimized assay medium, a blocking reagent and a versatile regenerating solution may facilitate a sensitivity amplified, non-specific adsorption-minimized and renewable sensing system. A dynamic dilution range of ∼1:5000 to 1:70 and detection limit of 1:5350 dilution were observed. Results obtained by evaluating IRS samples indicate that the detection sensitivity of the developed immunoassay is comparable to that of the ELISA method and superior to that of the dot-immunogold test.  相似文献   

19.
There have been reports of fake artesunate (ART), which has led to deaths from untreated malaria in South East Asia. To rapidly screen for fake and adulterated ART products in the drug market, a lateral flow immunoassay (LFIA) based on a colloidal gold–monoclonal antibody probe for detection of ART within samples was developed. With this method, the calibration curve for ART was determined by the intensity ratio of the test and control bands at various ART concentrations. The linearity range was 12.5–200 μg/ml of ART. Samples were tested by the developed LFIA and can be calculated for ART contents. The levels of ART in the samples were also confirmed by enzyme-linked immunosorbent assay. The results of the two methods were in good conformance. The proposed LFIA was demonstrated to be a simple and rapid analytical method for detecting ART in the pharmaceutical formulation.  相似文献   

20.
Putalun W  Tanaka H  Muranaka T  Shoyama Y 《The Analyst》2002,127(10):1328-1332
An enzyme-linked immunosorbent assay (ELISA) was developed for determination of aculeatisides. Aculeatiside A was conjugated with bovine serum albumin (BSA) for immunization. The ratio of hapten in an antigen conjugate was determined by matrix-assisted laser desorption/ionization TOF mass spectrometry. Polyclonal antibody was developed in rabbits against an aculeatiside A-BSA conjugate. The antibody was specific for aculeatiside A and aculeatiside B. The range of the immunoassay extended from 100 ng ml(-1) to 5 pg ml(-1) of aculeatisides. Good correlation between ELISA and HPLC methods was obtained when crude extracts of plant samples were analyzed. The optimized ELISA was found to be applicable to the determination of total aculeatisides in various plant samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号