首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Surface pressure-area isotherm, neutron specular reflection, and small-angle neutron scattering studies have been carried out to determine the effects of added cholesterol and distearoylphosphatidylcholine (DSPC), on the molecular structures of monolayers and vesicles containing the dialkyl polyoxyethylene ether surfactant, 1,2-di-O-octadecyl-rac-glyceryl-3-(alpha-dodecaethylene glycol) (2C18E12). Previous neutron reflectivity studies on 2C18E12 monolayers at the air/water interface have shown them to possess a thickness of approximately 24 angstoms and highly disordered structure with significant intermixing of the polymer headgroups and alkyl chains. SANS studies of 2C18E12 vesicles gave a bilayer thickness of approximately 51 angstroms. Addition of cholesterol to 2C18E12 monolayers (1:1 molar ratio), produced a marked condensing effect coupled with an increased the layer thickness of approximately 7 angstroms, and in vesicles, increased bilayer thickness by approximately 16 angstroms. Monolayers consisting of 2C18E12:DSPC:cholesterol (1:1:2 molar ratio), showed a layer thickness of approximately 31 angstroms, whereas in vesicles, three-component bilayer was found to be only approximately 9 angstroms thicker than those possessed by vesicles composed solely of 2C18E12. Mixing between the molecules in three-component monolayers was shown to be ideal through analysis of the neutron reflectivity data. These findings are discussed in relation to increased ordering and decreased headgroup/hydrophobe intermixing within both monolayers and vesicle bilayers containing 2C18E12. The inferred increase in molecular order within vesicles composed of 2C18E12 with additional cholesterol and phospholipid is used as a model for explaining theoretical differences in bilayer permeability.  相似文献   

2.
We present a study on the initial wetting behaviors of two low molecular weight alkanes, heptane and octane, at the vapor/water interface using both neutron and X-ray reflectometry. Combined X-ray and neutron reflectivity studies data showed that a uniform film, which has never been reported, was formed continuously at 25 degrees C. As the adsorptive deposition continued, each adsorbed film was saturated at a specific equilibrium thickness: 48 and 36 A for deuterated heptane and octane, respectively, and 21 A for hydrogenated octane. The thickness of the adsorbed layer measured by neutron reflectivity is in agreement with that measured using X-ray reflectivity. Our observations of continuous and saturated adsorption behaviors are analyzed qualitatively using a kinetic adsorption model.  相似文献   

3.
The surface and solution behavior of the mixed dialkyl chain cationic and nonionic surfactant mixture of dihexadecyldimethylammonium bromide, DHDAB, and hexaethylene monododecyl ether, C12E6, has been investigated, using primarily the scattering techniques of small-angle neutron scattering and neutron reflectivity. Within the time scale of the measurements, the adsorption of the pure component C12E6 at the air-solution interface shows no time dependence. In contrast, the adsorption of the DHDAB/C12E6 mixture and pure DHDAB has a pronounced time dependence. The characteristic time for adsorption varies with surfactant concentration, composition, and temperature. It is approximately 2-3 h for the DHDAB/C12E6 mixture, dependent upon concentration and composition, and approximately 50 min for DHDAB. At the air-solution interface, the equilibrium composition of the adsorbed layer shows a marked departure from ideal mixing, which is dependent upon both the solution concentration and the concentration of added electrolyte. In contrast, the composition of the aggregates in the bulk solution that are in equilibrium with the surface is close to ideal mixing, as expected for solution concentrations well in excess of the critical micellar concentration. The structure of the mixed adsorbed layer has been measured and compared with the structure of the equivalent pure surfactant monolayer, and no substantial changes in structure or conformation are observed. The extreme departure from ideal mixing in the adsorption behavior of the DHDAB/C12E6 mixture is discussed in the context of the structure of the adsorbed layer, changes in the underlying solution structures, and the failure of regular solution theory to predict such behavior.  相似文献   

4.
Neutron reflectivity and surface tension have been used to investigate the pH sensitivity of the adsorption of poly-L-lysine hydrobromide and sodium dodecyl sulfate mixtures at the air-solution interface. The surface tension variation with surfactant concentration is complex, and between the critical aggregation concentration and critical micellar concentration there is a marked increase in the surface tension. The neutron reflectivity results show that this is associated with a depletion of the surface of polypeptide/surfactant complexes. The variations in the adsorption and surface tension with pH are attributed to changes in the polypeptide conformation at the interface and in solution.  相似文献   

5.
Upon addition of silica to aqueous solutions of poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers (PEO-b-PCL) and sodium dodecyl sulfate (SDS), adsorption of the solutes occurs at the silica-water interface. The amount of the adsorbed constituents has been measured by the total concentration depletion method. Small-angle neutron scattering experiments (SANS) have been carried out to investigate the structure of the adsorbed layer. Although SDS is not spontaneously adsorbed onto hydrophilic silica, adsorption is observed in the presence of PEO-b-PCL diblocks, in relation to the relative concentration of the two compounds. Conversely, SDS has a depressive effect on the adsorption of the copolymer, whose structure at the interface is modified. Copolymer desorption is however never complete at high SDS content. These observations have been rationalized by the associative behavior of PEO-b-PCL and SDS in water.  相似文献   

6.
I studied the spatial structure of the thick transition region between n-hexane and a colloidal solution of 7-nm silica particles by X-ray reflectivity and grazing incidence small-angle scattering. The interfacial structure is discussed in terms of a semiquantitative interface model wherein the potential gradient at the n-hexane/sol interface reflects the difference in the potentials of "image forces" between the cationic Na(+) and anions (nanoparticles) and the specific adsorption of surface charge at the interface between the adsorbed layer and the solution, as well as at the interface between the adsorbed layer and n-hexane. The X-ray scattering data revealed that the average density of water in the field approximately 10(9)-10(10) V/m of the electrical double layer at the hexane/silica sol interface is the same as, or only few percent higher (1-7%) than, its density under normal conditions.  相似文献   

7.
The conformation and structural dimensions of α-lactalbumin (α-La) both in solution and adsorbed at oil-water interfaces of emulsions were investigated using synchrotron radiation circular dichroism (SRCD) spectroscopy, front-face tryptophan fluorescence (FFTF) spectroscopy, and dual polarization interferometry (DPI). The near-UV SRCD and the FFTF results demonstrated that the hydrophobic environment of the aromatic residues located in the hydrophobic core of native α-La was significantly altered upon adsorption, indicating the unfolding of the hydrophobic core of α-La upon adsorption. The far-UV SRCD results showed that adsorption of α-La at oil-water interfaces created a new non-native secondary structure that was more stable to thermally induced conformational changes. Specifically, the α-helical conformation increased from 29.9% in solution to 45.8% at the tricaprylin-water interface and to 58.5% at the hexadecane-water interface. However, the β-sheet structure decreased from 18.0% in solution to less than 10% at both oil-water interfaces. The DPI study showed that adsorption of α-La to a hydrophobic C18-water surface caused a change in the dimensions of α-La from the native globule-like shape (2.5-3.7 nm) to a compact/dense layer approximately 1.1 nm thick. Analysis of the colloidal stability of α-La stabilized emulsions showed that these emulsions were physically stable against droplet flocculation at elevated temperatures both in the absence and in the presence of 120 mM NaCl. In the absence of salt, the thermal stability of emulsions was due to the strong electrostatic repulsion provided by the adsorbed α-La layer, which was formed after the adsorption and structural rearrangement. In the presence of salt, although the electrostatic repulsion was reduced via electrostatic screening, heating did not induce strong and permanent droplet flocculation. The thermal stability of α-La stabilized emulsions in the presence of salt is a combined effect of the electrostatic repulsion and the lack of covalent disulfide interchange reactions. This study reports new information on the secondary and tertiary structural changes of α-La upon adsorption to oil-water interfaces. It also presents new results on the physical stability of α-La stabilized emulsions during heating and at moderate ionic strength (120 mM NaCl). The results broaden our understanding of the factors controlling protein structural change at emulsion interfaces and how this affects emulsion stability.  相似文献   

8.
9.
The aggregation behavior of short alkyl chain ionic liquids (ILs), namely 1-butyl, or 1-hexyl or 1-octylpyridinium and 1-octyl-2-, or -3-, or -4-methylpyridinium chlorides, in water has been assessed using surface tension, electrical conductance, (1)H NMR, small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) measurements. Critical aggregation concentrations (CACs), adsorption (at air/water interface) and thermodynamic parameters of aggregation have been reported. The values of CAC and area per adsorbed molecule decrease with the number of carbon atoms in the alkyl chain. The aggregation process is driven by both favorable enthalpy and entropy contributions. An attempt was made to examine the morphological features of the aggregates in water using SANS and SAXS methods. SANS and SAXS curves displayed diffuse structural peaks that could not be model fitted, and therefore, we calculated the mean aggregation numbers from the Q(max) assuming that IL molecules typically order into cubic type clusters.  相似文献   

10.
The surface adsorption behavior and solution aggregate microstructure of the dichain cationic surfactant dihexadecyl dimethylammonium bromide (DHDAB) have been studied using small angle neutron scattering (SANS), light scattering, neutron reflectivity (NR), and surface tension (ST). Using a combination of surface tension and neutron reflectivity, the DHDAB equilibrium surface excess at saturation adsorption has been measured as 2.60 +/- 0.05 x 10 (-10) mol.cm (-2). The values obtained by both methods are in good agreement and are consistent with the values reported for other dialkyl chain surfactants. The critical aggregation concentration (CAC) values obtained from both methods (NR and ST) are also in good agreement, with a mean value for the CAC of 4 +/- 2 x 10 (-5) M. The surface equilibrium is relatively slow, and this is attributed to monomer depletion in the near surface region, as a consequence of the long monomer residence times in the surfactant aggregates. The solution aggregate morphology has been determined using a combination of SANS, dynamic light scattering (DLS), cryogenic transmission electron microscopy (CryoTEM), and ultrasmall angle neutron scattering (USANS). Within the concentration range 1.5-80 mM, the aggregates are in the form of bilamellar vesicles with a lamellar " d-spacing" of the order of 900 A. The vesicles are relatively polydisperse with a particle size in the range 2000-4000 A. Above 80 mM, the bilamellar vesicles coexist with an additional L beta lamellar phase.  相似文献   

11.
Small-angle neutron scattering (SANS) was used to investigate the interparticle interactions in concentrated dispersions of colloidal silica stabilized either by steric or by electrostatic repulsive interactions. In 10 mM NaCl, an adsorbed PEO layer is required to prevent flocculation, and particles are stabilized by steric repulsions. The adsorbed layer was made invisible to neutrons by contrast matching with the aqueous continuous phase. Dispersions of the same particles at the same concentrations but in the absence of added salt and adsorbed PEO were also studied. In both cases, the SANS spectra of concentrated dispersions show a peak at low Q, which is due to interparticle interactions: a structure factor. The SANS data can be described rather well by a homogeneous spherical form factor and a structure factor based on the Hayter-Penfold/Yukawa potential model. The steric potential was compared to the electrostatic potential obtained by fitting the SANS data of the bare silica dispersions. The steric potential shows a greater dependence on the particle volume fraction, which we ascribe to the penetration and compression of the adsorbed PEO layer as the particles approach.  相似文献   

12.
The structure and orientation of adsorbed myoglobin as directed by metal-histidine complexation at the liquid-film interface was studied as a function of time using neutron and X-ray reflectivity (NR and XR, respectively). In this system, adsorption is due to the interaction between iminodiacetate (IDA)-chelated divalent metal ions Ni(II) and Cu(II) and histidine moieties at the outer surface of the protein. Adsorption was examined under conditions of constant area per lipid molecule at an initial pressure of 40 mN/m. Adsorption occurred over a time period of about 15 h, allowing detailed characterization of the layer structure throughout the process. The layer thickness and the in-plane averaged segment volume fraction were obtained at roughly 40 min intervals by NR. The binding constant of histidine with Cu(II)-IDA is known to be about four times greater than that of histidine with Ni(II)-IDA. The difference in interaction energy led to significant differences in the structure of the adsorbed layer. For Cu(II)-IDA, the thickness of the adsorbed layer at low protein coverage was < or = 20 A and the thickness increased almost linearly with increasing coverage to 42 A. For Ni(II)-IDA, the thickness at low coverage was approximately 38 A and increased gradually with coverage to 47 A. The in-plane averaged segment volume fraction of the adsorbed layer independently confirmed a thinner layer at low coverage for Cu(II)-IDA. These structural differences at the early stages are discussed in terms of either different preferred orientations for isolated chains in the two cases or more extensive conformational changes upon adsorption in the case of Cu(II)-IDA. Subphase dilution experiments provided additional insight, indicating that the adsorbed layer was not in equilibrium with the bulk solution even at low coverages for both IDA-chelated metal ions. We conclude that the weight of the evidence favors the interpretation based on more extensive conformational changes upon adsorption to Cu(II)-IDA.  相似文献   

13.
The structure of water at aqueous interfaces is of the utmost importance in biology, chemistry, and geology. We use neutron reflectivity and quartz crystal microbalance to probe an interface between hydrophilic quartz and bulk liquid solutions of H2O/D2O mixtures. We find that near the interface the neutron scattering length density is larger than in the bulk solution and there is an excess adsorbed mass. We interpret this as showing that there is a region adjacent to the quartz that is enriched in D2O and extends 5-10 nm into the solution. This suggests caution when interpreting results where D2O is substituted for H2O in aqueous interfacial chemistry.  相似文献   

14.
External reflection FTIR spectroscopy and surface pressure measurements were used to compare conformational changes in the adsorbed structures of three globular proteins at the air/water interface. Of the three proteins studied, lysozyme, bovine serum albumin and beta-lactoglobulin, lysozyme was unique in its behaviour. Lysozyme adsorption was slow, taking approximately 2.5 h to reach a surface pressure plateau (from a 0.07 mM solution), and led to significant structural change. The FTIR spectra revealed that lysozyme formed a highly networked adsorbed layer of unfolded protein with high antiparallel beta-sheet content and that these changes occurred rapidly (within 10 min). This non-native secondary structure is analogous to that of a 3D heat-set protein gel, suggesting that the adsorbed protein formed a highly networked interfacial layer. Albumin and beta-lactoglobulin adsorbed rapidly (reaching a plateau within 10 min) and with little change to their native secondary structure.  相似文献   

15.
Adsorption of nanoparticles at the solid-liquid interface   总被引:1,自引:0,他引:1  
The adsorption of differently charged nanoparticles at liquid-solid interfaces was investigated by in situ X-ray reflectivity measurements. The layer formation of positively charged maghemite (γ-Fe(2)O(3)) nanoparticles at the aqueous solution-SiO(2) interface was observed while negatively charged gold nanoparticles show no adsorption at this interface. Thus, the electrostatic interaction between the particles and the charged surface was determined as the driving force for the adsorption process. The data analysis shows that a logarithmic particle size distribution describes the density profile of the thin adsorbed maghemite layer. The size distribution in the nanoparticle solution determined by small angle X-ray scattering shows an average particle size which is similar to that found for the adsorbed film. The formed magehemite film exhibits a rather high stability.  相似文献   

16.
Strongly ionized amphiphilic diblock copolymers of poly(styrene)-b-poly(styrenesulfonate) with various hydrophilic and hydrophobic chain lengths were synthesized by living radical polymerization, and their properties and self-assembling behavior were systematically investigated by surface tension measurement, foam formation, hydrophobic dye solubilization, X-ray reflectivity, dynamic light scattering, small-angle neutron scattering, small-angle X-ray scattering, and atomic force microscope techniques. These copolymer solutions in pure water did not show a decrease of surface tension with increasing polymer concentration. The solutions also did not show foam formation, and no adsorption at the air/water interface was confirmed by reflectivity experiments. However, in 0.5 M NaCl aq solutions polymer adsorption and foam formation were observed. The critical micelle concentration (cmc) was observed by the dye solubilization experiment in both the solutions with and without added salt, and by dynamic light scattering we confirmed the existence of polymer micelles in solution, even though there was no adsorption of polymer molecules at the water surface in the solution without salt. By the small-angle scattering technique, we confirmed that the micelles have a well-defined core-shell structure and their sizes were 100-150 A depending on the hydrophobic and hydrophilic chain length ratio. The micelle size and shape were unaffected by addition of up to 0.5 M salt. The absence of polymer adsorption at the water surface with micelle formation in a bulk solution, which is now known as a universal characteristic for strongly ionized amphiphilic block copolymers, was attributed to the image charge effect at the air/water interface due to the many charges on the hydrophilic segment.  相似文献   

17.
The adsorption of surface-active protein hydrophobin, HFBII, and HFBII/surfactant mixtures at the solid-solution interface has been studied by neutron reflectivity, NR. At the hydrophilic silicon surface, HFBII adsorbs reversibly in the form of a bilayer at the interface. HFBII adsorption dominates the coadsorption of HFBII with cationic and anionic surfactants hexadecyltrimethyl ammonium bromide, CTAB, and sodium dodecyl sulfate, SDS, at concentrations below the critical micellar concentration, cmc, of conventional cosurfactants. For surfactant concentrations above the cmc, HFBII/surfactant solution complex formation dominates and there is little HFBII adsorption. Above the cmc, CTAB replaces HFBII at the interface, but for SDS, there is no affinity for the anionic silicon surface hence there is no resultant adsorption. HFBII adsorbs onto a hydrophobic surface (established by an octadecyl trimethyl silane, OTS, layer on silicon) irreversibly as a monolayer, similar to what is observed at the air-water interface but with a different orientation at the interface. Below the cmc, SDS and CTAB have little impact upon the adsorbed layer of HFBII. For concentrations above the cmc, conventional surfactants (CTAB and SDS) displace most of the HFBII at the interface. For nonionic surfactant C(12)E(6), the pattern of adsorption is slightly different, and although some coadsorption at the interface takes place, C(12)E(6) has little impact on the HFBII adsorption.  相似文献   

18.
We have investigated the adsorption of randomly annealed polyampholytes containing [2-(dimethylamino)ethyl methacrylate)] (DMAEMA), methacrylic acid (MAA), and [3-(2-methylpropionamido)propyl] trimethylammonium chloride (MAPTAC) with various molar compositions. The adsorption was performed from dilute aqueous solutions onto silicon substrates. The adsorbed layers were characterized by reflectivity techniques such as reflectometry, ellipsometry, and neutron specular reflection. As expected for annealed polyampholytes, the adsorption was found to depend strongly on the pH, with a maximum within the isoelectric domain of the polyampholyte. The monomer volume fraction profiles of the adsorbed layers were determined from neutron specular reflection measurements. In the isoelectric domain, the polyampholyte chains adopt a compact conformation, with a layer thickness of about 60 A. The polyampholyte layer is as dense as the adsorbed layer of fully charged polyelectrolyte but much thicker. Finally, we found that changing the ratio of neutral units along the polyampholyte chain in the isoelectric domain had no significant effect on the concentration profile of the adsorbed layer.  相似文献   

19.
In this work, small-angle neutron scattering (SANS) is used to probe the structural transformations that accompany temperature-induced gelation of emulsions stabilized by a temperature-responsive polymer. The latter is poly(NIPAM-co-PEGMa) (N-isopropylacrylamide and poly(ethyleneglycol) methacrylate) and contains 86 mol% NIPAM. Turbidity measurements revealed that poly(NIPAM-co-PEGMa) has a lower critical solution temperature (T(LCST)) of 36.5 degrees C in D(2)O. Aqueous polymer solutions were used to prepare perfluorodecalin-in-water emulsions (average droplet size of 6.9 mum). These emulsions formed gels at 50 degrees C. SANS measurements were performed on the poly(NIPAM-co-PEGMa) solutions and emulsions as a function of temperature. The emulsion was also prepared using a D2O/H2O mixture containing 72 vol% D2O in order to make scattering from the droplets negligible (on-contrast). The SANS data were analyzed using a combination of Porod and Ornstein-Zernike form factors. The results showed that the correlation length (xi) of the polymer scaled as xi approximately phi(p)(-0.68) at 32 degrees C, where phi(p) is the polymer volume fraction. The xi value increased for all systems as the temperature increased, which was attributed to a spinodal transition. At temperatures greater than T(LCST), the polymer solution changed to a polymer dispersion of poly(NIPAM-co-PEGMa) aggregates. The aggregates have features that are similar to microgel particles. The average size of these particles was estimated as 160-170 nm. The particles are "sticky" and are gel-forming. The on-contrast experiments performed using the emulsion indicated that the interfacial polymer chains condensed to give a relatively thick polymer layer at the perfluorodecalin-water interface at 50 degrees C. The gelled emulsions appear to consist of perfluorodecalin droplets with an encapsulating layer of collapsed polymer to which sticky microgel particles are adsorbed. The latter act as a "glue" between coated droplets in the emulsion gel.  相似文献   

20.
Neutron reflectivity has been used to determine the thickness and surface coverage of monolayers of two 14-residue beta-hairpin peptides adsorbed at the air/water interface. The peptides differed only in that one was labeled with a fluorophore, while the other was not. The neutron reflection measurements were mainly made in null reflecting water, NRW, containing 8.1% D(2)O. Under this isotopic contrast the water is invisible to neutrons and the specular signal was then only from the peptide layer. At the highest concentration of ca. 4 microg/mL studied, the area per peptide molecule (A) was found to be 230 +/- 10 and 210 +/- 10 A(2) for the peptides with and without a BODIPY-based fluorophore, respectively. The thickness of the peptide layers was about 10 A for a Gaussian distribution. With decreasing bulk peptide concentration, both surface excess and layer thickness showed a steady trend of decrease. While the neutron results clearly indicate structural changes within the peptide monolayers with increasing bulk concentration, the outstanding structural feature is the formation of rather uniform peptide layers, consistent with the structural characteristics typical of beta-strand peptide conformations. These structural features are well supported by the parallel measurements of the adsorbed layers in D(2)O. With this isotopic contrast the neutron reflectivity provides an estimate about the extent of immersion of the peptide layers into water. The results strongly suggest that the 14-mer peptide monolayers were fully afloat on the surface of water, with only the carboxy groups on Glu residues hydrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号