首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The aim of the present paper is to analyze the natural convection heat and mass transfer of nanofluids over a vertical plate embedded in a saturated Darcy porous medium subjected to surface heat and nanoparticle fluxes. To carry out the numerical solution, two steps are performed. The governing partial differential equations are firstly simplified into a set of highly coupled nonlinear ordinary differential equations by appropriate similarity variables, and then numerically solved by the finite difference method. The obtained similarity solution depends on four non-dimensional parameters, i.e., the Brownian motion parameter (N b), the Buoyancy ratio (N r), the thermophoresis parameter (N t), and the Lewis number (Le). The variations of the reduced Nusselt number and the reduced Sherwood number with N b and N t for various values of Le and N r are discussed in detail. Simulation results depict that the increase in N b, N t, or N r decreases the reduced Nusselt number. An increase in the Lewis number increases both of the reduced Nusselt number and the Sherwood number. The results also reveal that the nanoparticle concentration boundary layer thickness is much thinner than those of the thermal and hydrodynamic boundary layers.  相似文献   

2.
This paper presents an analytical and numerical study of natural convection of a double-diffusive fluid contained in a rectangular slot subject to uniform heat and mass fluxes along the vertical sides. Governing parameters of the problem under study are the thermal Rayleigh number, Ra T ; buoyancy ratio, N; Lewis number, Le; Prandtl number, Pr and aspect ratio of the cavity, A. In the first part of the analytical study a scale analysis is applied to the two extreme cases of heat-transfer and mass-transfer-driven flows. In the second part, an analytical solution, based on the parallel flow approximation, is reported for tall enclosures (A?1). Solutions for the flow fields, temperature and concentration distributions and Nusselt and Sherwood numbers are obtained in terms of the governing parameters of the problem. In the limits of heat-driven and solute-driven flows a good agreement is obtained between the prediction of the scale analysis and those of the analytical solution. The numerical solutions are based on the complete governing equations for two-dimensional flows, and cover the range 1≤Ra T ≤107, 0≤N≤105, 10-3Le≤103, 1≤A≤20 and Pr=7. A good agreement is found between the analytical predictions and the numerical simulation.  相似文献   

3.
A detailed numerical study has been performed to investigate transient natural convection heat and mass transfer in a porous enclosure. Major dimensionless groups governing the present problem areRa,N,Le, φ andAr. Results are particular presented to illustrate the effects of the combined thermal and solutal buoyancy forces on the temporal evolution of local/average Nusselt and Sherwood numbers. The results show that with the increase in the Rayleigh number, the heat and mass transfer is enhanced as a result of greater buoyancy effect. Additionally, the increase in buoyancy ratioN results in an improvement in the heat and mass transfer rates and in the mean time causes a short time duration for the flow to approach the steady-state condition.  相似文献   

4.
Turbulent heat and mass transfer of a rotating disk for Prandtl and Schmidt numbers much larger than unity was modeled using an integral method validated against empirical equations of different authors for Sherwood numbers. As shown, decrease in relative thickness of thermal/diffusion boundary layers with increasing local radii entails additional increase of the exponent at the Reynolds number in expressions for Nusselt and Sherwood numbers in comparison with air flows.  相似文献   

5.
This paper studies the thermo-bioconvection in a square porous cavity filled by oxytactic microorganisms. The Darcy model with Boussinesq approximation has been used to solve the flow and heat and mass transfer in the porous region. The governing equations formulated in terms of the dimensionless stream function, temperature and concentration have been solved using the finite difference method. Comparison with results from the open literature of the mean Nusselt number for a square cavity filled with a regular porous medium is made. It is shown that the results are in very good agreement. The main objective was to investigate the influence of the traditional Rayleigh number Ra = 10, 100, bioconvection Rayleigh number Rb = 10, 100, Lewis number Le = 1, 10, and Péclet number Pe = 0.1, 1 on the fluid flow and heat and mass transfer. Comprehensive analysis of an effect of these key parameters on the Nusselt and Sherwood numbers at the vertical walls has been conducted.  相似文献   

6.
The problem of steady, laminar, thermosolutal Marangoni convection flow of an electrically-conducting fluid along a vertical permeable surface in the presence of a magnetic field, heat generation or absorption and a first-order chemical reaction effects is studied numerically. The general governing partial differential equations are converted into a set of self-similar equations using unique similarity transformations. Numerical solution of the similarity equations is performed using an implicit, iterative, tri-diagonal finite-difference method. Comparisons with previously published work is performed and the results are found to be in excellent agreement. Approximate analytical results for the temperature and concentration profiles as well as the local Nusselt and sherwood numbers are obtained for the conditions of small and large Prandtl and Schmidt numbers are obtained and favorably compared with the numerical solutions. The effects of Hartmann number, heat generation or absorption coefficient, the suction or injection parameter, the thermo-solutal surface tension ratio and the chemical reaction coefficient on the velocity, temperature and concentration profiles as well as quantitites related to the wall velocity, boundary-layer mass flow rate and the Nusselt and Sherwood numbers are presented in graphical and tabular form and discussed. It is found that a first-order chemical reaction increases all of the wall velocity, Nusselt and Sherwood numbers while it decreases the mass flow rate in the boundary layer. Also, as the thermo-solutal surface tension ratio is increased, all of the wall velocity, boundary-layer mass flow rate and the Nusselt and Sherwood numbers are predicted to increase. However, the exact opposite behavior is predicted as the magnetic field strength is increased.  相似文献   

7.
A boundary layer analysis is used to investigate the effect of lateral mass flux on mixed convection heat and mass transfer over inclined permeable surfaces in porous media. The conservation equations that govern the problem are reduced to a system of non-linear ordinary differential equations and then the resulting equations is solved by numerical method. The numerical results for heat and mass transfer in terms of Nusselt and Sherwood number are presented in x-y plots for the buoyancy ratio (N) and Lewis number (Le) with mass flux pammeter (Fw). The obtained results are validated against previously published results with on special case of the problem.  相似文献   

8.
The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the length dependent effect based on the material constant and dynamic viscosity. Also, it introduces the biharmonic operator in the Navier-Stokes equations, which is absent in the case of Newtonian fluids. The solution to the time-dependent non-linear and coupled governing equations is carried out with an unconditionally stable Crank-Nicolson type of numerical schemes. Numerical results for the transient flow variables, the average wall shear stress, the Nusselt number, and the Sherwood number are shown graphically for both generative and destructive reactions. The time to reach the temporal maximum increases as the reaction constant K increases. The average values of the wall shear stress and the heat transfer rate decrease as K increases, while increase with the increase in the Sherwood number.  相似文献   

9.
Combined heat and mass transfer process by natural convection from a wavy vertical surface immersed in a fluid-saturated semi-infinite porous medium due to Soret and Dufour effects for Forchheimer extended non-Darcy model has been analyzed. A similarity transformation followed by a wavy to flat surface transformation is applied to the governing coupled non-linear partial differential equations, and they are reduced to boundary layer equations. The obtained boundary layer equations are solved by finite difference scheme based on the Keller-Box approach in conjunction with block-tridiagonal solver. Detailed simulations are carried out for a wide range of parameters like Groshof number (Gr*), Lewis number (Le), Buoyancy ratio (B), Wavy wall amplitude (a), Soret number (S r ), and Dufour number (D f ). Comparison tables local and average Nusselt (Nu) number, local and average Sherwood (Sh) number plots are presented.  相似文献   

10.
A general analysis has been developed to study the combined effect of the free convective heat and mass transfer on the steady three-dimensional laminar boundary layer flow over a stretching surface. The flow is subject to a transverse magnetic field normal to the plate. The governing three-dimensional partial differential equations for the present case are transformed into ordinary differential equation using three-dimensional similarity variables. The resulting equations, are solved numerically by applying a fifth order Runge-Kutta-Fehlberg scheme with the shooting technique. The effects of the Magnetic field Parameter M, buoyancy parameter N, Prandtl number Pr and Schmidt number Sc are examined on the velocity, temperature and concentration distributions. Numerical data for the skin-friction coefficients, Nusselt and Sherwood numbers have been tabulated for various parametric conditions. The results are compared with known from the literature.  相似文献   

11.
This article reports a numerical study of double-diffusive convection in a fluid-saturated vertical porous annulus subjected to discrete heat and mass fluxes from a portion of the inner wall. The outer wall is maintained at uniform temperature and concentration, while the top and bottom walls are adiabatic and impermeable to mass transfer. The physical model for the momentum equation is formulated using the Darcy law, and the resulting governing equations are solved using an implicit finite difference technique. The influence of physical and geometrical parameters on the streamlines, isotherms, isoconcentrations, average Nusselt and Sherwood numbers has been numerically investigated in detail. The location of heat and solute source has a profound influence on the flow pattern, heat and mass transfer rates in the porous annulus. For the segment located at the bottom portion of inner wall, the flow rate is found to be higher, whereas the heat and mass transfer rates are higher when the source is placed near the middle of the inner wall. Further, the average Sherwood number increases with Lewis number, while for the average Nusselt number the effect is opposite. The average Nusselt number increases with radius ratio (λ); however, the average Sherwood number increases with radius ratio only up to λ = 5, and for λ > 5 , the average Sherwood number does not increase significantly.  相似文献   

12.
This paper presents the effects of cross buoyancy and Prandtl number on the flow and heat transfer characteristics around three equal isothermal square cylinders arranged in a staggered configuration within an unconfined medium. Transient two-dimensional numerical simulations are performed with a finite volume code based on the SIMPLEC algorithm in a collocated grid system. The pertinent dimensionless parameters, such as Reynolds, Prandtl and Richardson numbers are considered in the range of 1 ≤ Re ≤ 30, 0.7 ≤ Pr ≤ 100 and 0 ≤ Ri ≤ 1. The representative streamlines, vortex structures and isotherm patterns are presented and discussed. In addition, the overall drag and lift coefficients and average Nusselt numbers are determined to elucidate the effects of Reynolds, Prandtl and Richardson numbers on flow and heat transfer. The flow is observed to be steady for all the ranges of parameters considered. The drag coefficient is found to decrease with Re (for Ri = 0) and Ri at low Pr, whereas it increases with Pr at higher Ri. The lift coefficient decreases with Ri at low Pr and increases with Pr at higher Ri. The time and surface average cylinder Nusselt number is found to increase monotonically with Re as well as Pr while it remains almost insensitive to Ri at low Pr.  相似文献   

13.
The characteristics of the turbulent heat transfer along the heated concave walls of return bends which have rectangular cross sections with large aspect ratio have been examined for various clearances of the ducts in detail. The experiments are carried out under the condition that the concave walls are heated at constant heat flux while the convex walls are insulated. Water as the working fluid is utilized. Using three kinds of clearance of 9, 34, and 55 mm, the Reynolds number in the turbulent range are varied from 5×103 to 8×104 with the Prandtl numbers ranging from 4 to 13. As a result it is elucidated that both the mean and the local Nusselt numbers are always greater than those for the straight parallel plates or for the straight duct, respectively. This is attributed to Görtier vortices, which are visualized here. It is also found that the more the clearance increases, the more both the local and the mean Nusselt numbers increase. Correlation equations for the mean and the local Nusselt numbers are determined in the range of parameters covered. Introducing the Richardson number, it appears that the local Nusselt number,Nu x , may be described as the following equation:Nu x =447.745 ·Re x 1.497 ·De x ?1.596 ·F 0.960 ·Pr 0.412  相似文献   

14.
This paper reports a numerical study of double diffusive natural convection in a vertical porous enclosure with localized heating and salting from one side. The physical model for the momentum conservation equation makes use of the Darcy equation, and the set of coupled equations is solved using the finite-volume methodology together with the deferred central difference scheme. An extensive series of numerical simulations is conducted in the range of −10 ⩽ N ⩽ + 10, 0 ⩽ R t ⩽ 200, 10−2Le ⩽ 200, and 0.125 ⩽ L ⩽ 0.875, where N, R t , Le, and L are the buoyancy ratio, Darcy-modified thermal Rayleigh number, Lewis number, and the segment location. Streamlines, heatlines, masslines, isotherms, and iso-concentrations are produced for several segment locations to illustrate the flow structure transition from solutal-dominated opposing to thermal dominated and solutal-dominated aiding flows, respectively. The segment location combining with thermal Rayleigh number and Lewis number is found to influence the buoyancy ratio at which flow transition and flow reversal occurs. The computed average Nusselt and Sherwood numbers provide guidance for locating the heating and salting segment.  相似文献   

15.
An analysis is performed to study the effects of the chemical reaction and heat generation or absorption on a steady mixed convection boundary layer flow over a vertical stretching sheet with nonuniform slot mass transfer. The governing boundary layer equations with boundary conditions are transformed into the dimensionless form by a group of nonsimilar transformations. Nonsimilar solutions are obtained numerically by solving the coupled nonlinear partial differential equations using the quasi-linearization technique combined with an implicit finite difference scheme. The numerical computations are carried out for different values of dimensionless parameters to display the distributions of the velocity, temperature, concentration, local skin friction coefficient, local Nusselt number, and local Sherwood number. The results obtained indicate that the local Nusselt and Sherwood numbers increase with nonuniform slot suction, but nonuniform slot injection produces the opposite effect. The local Nusselt number decreases with heat generation and increases with heat absorption.  相似文献   

16.
In the commercial test for smooth tube inserted with rotors-assembled strand comparing with non-inserted ones on condensers in electric power plant, using water as working fluid, the single-phase pressure drop and heat transfer were measured. It was found difficult to receive reliable and accurate enough data through commercial test. Meanwhile, the single-phase pressure drop and heat transfer in a rotors-assembled strand inserted tube were measured in laboratory, with the tube side Prandtl numbers varying from 5.67 to 5.80 and the tube side Reynolds numbers varying from 21,300 to 72,200. Before that, a validation experiment based on the same smooth tube was carried out to testify the experimental system and the data reduction method, in which fixed mounts were employed to eliminate entrance effects. The Prandtl numbers varied from 5.64 to 5.76 and the Reynolds numbers varied from 19,000 to 56,000 in the tube. The annular side Reynolds numbers remained nearly constant at the value of around 50,000 for all experiments, with the annular side Prandtl numbers varying from 8.02 to 8.22. The experimental results of smooth tube show that employment of fixed mounts leads to a visible bias of friction factor at relative low Reynolds numbers while it hardly affects the Nusselt numbers. On the other hand, experiment for the tube inserted with rotors-assembled strand show remarkable improvement for heat transfer with the Nusselt number increased by 9.764–11.87% and the overall heat transfer coefficient increased by 7.08–7.49% within the range of Reynolds number from about 21,300 to 55,500. Meanwhile, friction factor increases inevitably by 278.1–353.9% within the same range of Reynolds number. Based on through multivariant linear normal regression method, the Reynolds number and Prandtl number dependencies of the Nusselt number and friction factor were determined to be Nu = 0.0031Re0.9Pr1.0849 and f = 0.993Re−0.22.  相似文献   

17.
In this paper, the effects of Prandtl number on the steady magneto-convection around a centrally located adiabatic body inside a square enclosure are numerically investigated. Two-dimensional nonlinear governing equations are discretized using the control volume method and hybrid scheme. The equations are solved using SIMPLER algorithm. The results are displayed in the form of streamlines and isotherms when the Rayleigh number varies between 103 and 106, the Hartmann number changes between 0 and 100 and the Prandtl number ranges between 0.005 and 0.1. The ratio of the buoyancy force to the Lorentz force (Ra/Ha 2) is introduced as an index to compare the contribution of natural convection and magnetic field strength on heat transfer. The results obtained from numerical modeling show that the Prandtl number has not considerable effect on heat transfer at low Rayleigh numbers. The effect of magnetic field strength on convection is increased by increasing Prandtl number. The effect of Prandtl number on the average Nusselt number in the presence of a magnetic field is less than the case without a magnetic field.  相似文献   

18.
In this paper, the problem of laminar, two dimensional heat convection from a circular cylinder performing steady rotation is investigated. The cylinder is␣placed with its axis horizontal in a quiescent fluid of infinite extent. Because of viscous dissipation, the flow process is confined to the region adjacent to the cylinder and is mainly driven by shear and buoyancy forces. The study is based on the solution of the full conservation equations of mass, momentum and energy for Rayleigh numbers up to 104 and Reynolds numbers (based on surface velocity) up to 400 while Prandtl number ranges between 0.7 and 7.0. For the range of parameters considered, the study revealed that the rate of heat transfer increases with the increase of Rayleigh number and decreases with the increase of speed of rotation. The increase of Prandtl number resulted in an appreciable increase in the average Nusselt number only at low Reynolds numbers. The effect of Prandtl number at high Reynolds number is negligibly small. The resulting flow field in all cases is steady with no vortex shedding. The streamlines and isotherms are plotted for a number of cases to show the details of the velocity and thermal fields. Received on 15 December 1997  相似文献   

19.
Dulal Pal 《Meccanica》2009,44(2):145-158
In this paper an analysis has been made to study heat and mass transfer in two-dimensional stagnation-point flow of an incompressible viscous fluid over a stretching vertical sheet in the presence of buoyancy force and thermal radiation. The similarity solution is used to transform the problem under consideration into a boundary value problem of nonlinear coupled ordinary differential equations containing Prandtl number, Schmidt number and Sherwood number which are solved numerically with appropriate boundary conditions for various values of the dimensionless parameters. Comparison of the present numerical results are found to be in excellent with the earlier published results under limiting cases. The effects of various physical parameters on the boundary layer velocity, temperature and concentration profiles are discussed in detail for both the cases of assisting and opposing flows. The computed values of the skin friction coefficient, local Nusselt number and Sherwood number are discussed for various values of physical parameters. The tabulated results show that the effect of radiation is to increase skin friction coefficient, local Nusselt number and Sherwood number.  相似文献   

20.
The direct numerical simulation(DNS) of heat transfer in a fully developed non-isothermal particle-laden turbulent channel flow is performed.The focus of this paper is on the modulation of the particles on turbulent thermal statistics in the particle-laden flow with three Prandtl numbers(P r = 0.71,1.5,and 3.0) and a shear Reynolds number(Reτ = 180).Some typical thermal statistics,including normalized mean temperature and their fluctuations,turbulent heat fluxes,Nusselt number and so on,are analyzed.The results show that the particles have less effects on turbulent thermal fields with the increase of Prandtl number.Two reasons can explain this.First,the correlation between fluid thermal field and velocity field decreases as the Prandtl number increases,and the modulation of turbulent velocity field induced by the particles has less influence on the turbulent thermal field.Second,the heat exchange between turbulence and particles decreases for the particle-laden flow with the larger Prandtl number,and the thermal feedback of the particles to turbulence becomes weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号