首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The applicability of a radon emanation system to radium determination in fine-grained solid samples has been investigated by means of a closed radon emanation system consisting of a radon monitor and an aluminium vessel. The system has been calibrated with radium-containing fine-grained samples (e.g. phosphogypsum, granite and pitchblende) and the evaluation of the calibration data included linearity, detection limits and analytical resolution of the method. The studied radon emanation system presents very good linear response (R 2 = 0.99) to the radium content of the samples, the detection limit for radon is 25 Bq m?3 and the analytical resolution 15 Bq m?3. In addition, the relation between particle size of the materials and radon emanation has indicated that the applicability of the radon emanation system to radium determination is strongly depended not only on the mineral type but also on the particle size of the grained material.  相似文献   

2.
The physical and chemical characteristics of radon gas make it a good tracer for use in the application of atmospheric transport models. Radon exhalation rate from soil is one of the most important factors for evaluation of the environmental radon level. For this purpose to find out the volumetric activity of radon in ground-level air the measuring has been made using radon monitor SARAD RTM 2200. Radon volumetric activity and radon exhalation rate in ground-level air and at different depths of soil depending on soil temperature and atmospheric parameters in different seasons of the year was calculated and evaluated in two areas of Vilnius city. It has been established that the volumetric activity of radon and radon exhalation intensity is vertically distributed and the corresponding increase in deeper soil layers, and depends on the specific activity of radium, soil temperature and moisture content, temperature difference between soil and atmospheric temperatures.  相似文献   

3.
Radon α-activity concentrations have been measured inside and outside various building materials by combining a calculational method with the solid state nuclear track detector (SSNTD) technique. Radon emanation coefficients of the studied materials have been evaluated. A new calibration method for determining the radium (226Ra) and thorium (232Th) specific activities of the considered building materials has been developed. The radon production rates per unit volume of the studied materials have been evaluated. The influence of the material porosity on the radon emanation coefficient and radon production rate have been investigated.  相似文献   

4.
The radioactivity contents in building materials used in Hong Kong were measured to determine the sources of the high indoor radon concentrations observed in local buildings. The radium contents and the radon emanation coefficients of different building materials were measured by high resolution γ-ray spectroscopy using germanium detectors. The radon exhalation rates were measured using scintillation cells by circulating the exhaled radon from building materials and obtaining the initial growth rates. The radium content and the radon exhalation rates of concrete and bricks used in Hong Kong were found to be higher than those in some other countries, resulting in high indoor radon concentrations probably due to the high radioactivity contents in the aggregates, granitic in nature, used in building materials.  相似文献   

5.
The specific activities of 238U, 232Th, and 40K in selected building materials used in Japan were measured using a high-purity germanium detector. The uranium and thorium concentrations were determined from same samples using inductively coupled plasma mass spectrometry. There was a good agreement between the measurement of uranium and thorium with both methods (R 2 = 0.94, and 0.97, respectively). Based on the specific activities, we have estimated some hazard indexes such as radium equivalent activities (Ra eq), external hazard index (H ex), internal hazard index (H in), annual gonadal equivalent dose (AGED), internal alpha dose, mass exhalation rate and emanation coefficient of radon.  相似文献   

6.
Indoor radon and thoron concentrations were dominated with their exhalation rate from building materials. Thus, the evaluation of exhalation rate with highly precise is important. This paper presented a new technique to measure the dependence radon/thoron exhalation rate, from building materials used in Japan, on absolute humidity. The measurement technique consisted of a solid state alpha detector equipped a ventilation-type chamber and humidity control system in a flow through method. The exhalation rate of dried samples (Indian red granite and Japanese gray granite) was measured at various absolute humidity levels in the range of 1–20 g cm−3. It was found that exhalation rate increased exponential with increasing of absolute humidity for both samples. Furthermore, the dependence of radon emanation coefficient on building material’s temperature was also studied using an accumulation chamber equipped with scintillation cell alpha detector. The emanation coefficient of dry sample increased proportionally with increasing the material’s temperature with a correlation factor of 0.88.  相似文献   

7.
Radon and thoron concentration in the outdoor environment are affected by the magnitude of the exhalation rate that can vary diurnally and seasonally. This paper presents measurement results of radon and thoron exhalation rates and gamma-ray dose rate in different season at same location points in Gunma Prefecture Japan. Exhalation rates were measured by the MSZ instrument which is based on the accumulation method. Three measurement points Katashina Village, Midori City and Takasaki City were selected for measurement. Soil water saturation and soil temperature were measured to investigate their relationship with exhalation rate. The diurnal variation of exhalation rate may be correlated with soil temperature but no clear relationship was found between them. The gamma-ray dose rate do not vary significantly at the same places even in different season. The average radon exhalation rates were 11 ± 2, 2 ± 1, 5 ± 3 and 11 ± 4 mBq m−2 s−1 for spring, summer, autumn and winter, respectively. Those for thoron were 1,100 ± 100, 120 ± 30, 250 ± 80 and 860 ± 140 mBq m−2 s−1. Thus there was a variation of radon and thoron exhalation rate with different seasons. The radon and thoron exhalation rates in the summer and autumn surveys are higher than those in the spring and winter surveys which were affected by rainfall. It indicates that water saturation is an influential factor for radon and thoron exhalation rates.  相似文献   

8.
Laboratory experiment was performed for the measurement of radon exhalation rate from the soil samples collected from Garhwal Himalayas. This study is accompanied by the measurement of soil-gas radon concentration in the same area. Both results were compared with the geological formation and structure of the area. No correlation was observed between soil-gas radon concentration and radon exhalation rate. However, it was found to be controlled by the lithology, geological structure and uranium mineralization in the area. The relationship between radon emanation, geological formation and occurrence of high indoor radon concentration is discussed.  相似文献   

9.
Measurements have been made of radon (222Rn), release from diverse quaternary samples collected from different sediment deposits in the Errachidia and Beni-Mellal areas (Morocco). The radon diffusion coefficient as one of some important parameters of radon transport in the soil has been measured using solid state nuclear track detectors (SSNTD). Radon -activity, uranium content and radon exhalation rate have been determined in the studied samples. Uranium concentrations were found to vary from 0.14 to 9.52 ppm whereas the radon exhalation rate varied from 0.003 to 0.145 Bq.m-2.h-1. A positive correlation has been found between radon exhalation rate and uranium content in the studied samples. The average radon diffusion coefficients were found to vary from (1.26±0.09).10-6 m2.s-1 to (4.3±0.36).10-6 m2.s-1. Furthermore, the correlation between 222Rn diffusion coefficient and porosity are also discussed.  相似文献   

10.
The concentration of radioactive226Ra,232Th and40K in building and ceramic materials of Bangladesh was investigated by γ-spectrometry with two HPGe detectors. Radium equivalent activities, representative level index values, criterion formula, emanation coefficients and222Rn mass exhalation rates were estimated for the radiation hazard of the natural radioactivity in the materials. The activity concentrations of the natural radionuclides, radium equivalent activities, emanation coefficients and222Rn mass exhalation rates are compared with the corresponding values for building and ceramic materials of different countries. The radium equivalent activities in the samples varied between 30.9 (mosaic stone) and 328.0 Bq·kg−1 (gypsum). The emanation coefficient of the materials ranged from 7.83 (cement) to 33.0% (soil) and the222Rn mass exhalation rate ranged from 2.31 (stone chips) to 118.0 μBq·kg−1·s−1 (gypsum).  相似文献   

11.
A simple method for the determination of the radon emanation fraction was studied using a liquid scintillation counter. The radon activity of the gaseous phase in a closed container was measured 1 day and 35 days after sealing and used to calculate the radon emanation fraction. Radon leakage from the container was investigated using a 226Ra radioactive standard solution (SRM4967, NIST) to plot a radon growth curve. The method was applied to materials that typically contain a high level of radium, such as phosphogypsum, phosphate fertilizer and a rock sample. The effect of temperature on the radon emanation fraction from the materials was investigated at 0, 10, 20, 30 and 40 °C. It was found that there is a linear correlation (R 2 = 0.746 − 0.946) between temperature and the emanation fraction. Within the temperature range, the radon emanation fractions were 0.241–0.466 for phosphogypsum, 0.225–0.351 for phosphate fertilizer and 0.154–0.351 for the rock sample.  相似文献   

12.
Radon alpha-activities per unit volume have been measured inside and outside different building material samples by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD). Radon emanation coefficients of the studied building materials have been evaluated. The porosities of the building material samples studied have been determined by using a Monte Carlo calculational method adapted to the experimental conditions and compared with data obtained by the Archimedes's method. The influence of the building material porosity on the radon emanation coefficient has been investigated.  相似文献   

13.
Effective radium content and radon exhalation rates in soil samples have been measured by ??Sealed Can Technique?? using LR-115 type II plastic track detectors. The soil samples were collected from Farrukhabad city of Utter Pradesh, India. The values of effective radium content were found to vary from 5.39 to 34.56?Bq?kg?1 with an average value of 16.58?Bq?kg?1 and a standard deviation of 7.16. The mass and surface exhalation rate has been found to vary from 0.41?×?10?6 to 2.64?×?10?6?Bq?kg?1?d?1 and 1.41?×?10?6 to 9.10?×?10?6?Bq?m?2?d?1, respectively. All the values of radium content in soil samples of study area were found to be quite lower than the permissible value of 370?Bq?kg?1 recommended by Organization for Economic Cooperation and Development.  相似文献   

14.
Measurements of radon,thoron and their progeny in Gifu prefecture,Japan   总被引:1,自引:0,他引:1  
Summary Due to the rocky neighborhood, consisting of mostly granite with high radium content, an elevated radon concentration was found in a territory of Gifu prefecture situated in the middle of Japan. Radon concentrations in water were measured and were found to be considerably high. Since indoor radon and radon progeny concentrations might be relatively high, their concentrations were also analyzed. Besides the radon and radon progeny, thoron and thoron progeny concentrations were also investigated. Dose estimations for radon and thoron in indoor air are discussed.  相似文献   

15.
Experiments were designed to measure trace uranium concentration and the rate of radon exhalation from masonry structural materials, both bare and surface finished and coated. LR115 cellulose nitrate track detectors were used to record the alpha emission from structural material surface. Fission track, neutron activation and fluorometric analysis methods were used to determine the uranium content. Most types of paints studied will reduce alpha contribution and radon emanation from building materials.  相似文献   

16.
Samples have been collected from different layers in a sedimentary phosphatic deposit and sieved. Different granulometric fractions have been selected. The uranium and thorium contents have been determined in each phosphate sample and its corresponding selected fractions. Radon (222Rn) α-activities per unit volume have been evaluated inside and outside each phosphate sample and its corresponding selected fractions by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD). The radon emanation coefficient in each phosphate layer has been determined and the global radon alpha activity outside a parallelepipedic block of the layers studied was evaluated. The influence of the lithology and granulation on the radon emanation has been studied.  相似文献   

17.
The radon emanation coefficient (ε) from aquifer rock and the Henry’s law constant (H) of radon were determined by measuring activity concentrations using liquid scintillation counter (LSC). For the evaluation of the method, the coefficients were measured at 0, 10 and 20 °C and the temperature dependency of the coefficients was compared with others. The radon emanation coefficients from the rock particles used in this work are 0.0845, 0.1007 and 0.1308 at 0, 10 and 20 °C, respectively. The dimensionless Henry’s law constants for the groundwater used in this work are 0.994, 1.153 and 2.641 at 0, 10 and 20 °C, respectively. The results show a good agreement with those in literatures.  相似文献   

18.
Radon emanation from surface water and groundwater samples has been studied by using CR-39 and LR-115 solid state nuclear track detectors (SSNTD). A calibration method for determining the thoron and radon concentrations of the water samples studied has been developed. The effect of pollution due to coal fly ashes, cement and granite dusts on the radon emanation from water samples has been investigated. The influence of the radon source on the radon emanation rates from water samples has been studied.  相似文献   

19.
Hot springs are famous as spa resorts throughout the world. However, these areas usually have high natural radioactivity from radon gas. In this study radon concentrations in air, hot spring water, and bottled mineral water produced in a spa area of Suan Phueng district, Ratchaburi province, Thailand were measured. Radon concentrations in air were in the range of 10–17 and 11–147 Bq/m3 for outdoor and indoor, respectively. Committed effective dose from inhale of radon were assessed and found to be in the range of 0.004–0.025, 0.25–0.6, and 1.134 mSv/y for visitor, local people and resort workers, respectively. These doses were in the range of 1.2 mSv/y regulated by UNSCEAR for the general public. Radon in hot spring water ranged from 2–154 Bq/L. Radon in bottled mineral water produced from the hot spring water were in the range of 17–22 and 0.2–0.3 Bq/L for those that stored for 7 and 90 days, respectively, after production. Radon concentration levels were in the range of the US Environmental Protection Agency reference level for radon in air which is 148 Bq/m3 and alternative maximum concentration limit (AMCL) for raw water which is 150 Bq/L. However, when considering the USEPA (Maximum concentration limit), 11 Bq/L, for radon in drinking water, the mineral water should be stored for at least 8–9 days after bottling before selling to the market.  相似文献   

20.
The radon concentration has been measured in thermal waters used for medical therapy and drinking purposes in Yalova basin, Turkey. Radon activity measurements in water samples were performed using RAD 7 radon detector equipped with RAD H2O (radon in water) accessory and following a protocol proposed by the manufacturer. The results show that the concentration of 222Rn in thermal waters ranges from 0.21 to 5.82 Bql?1 with an average value of 2.4 Bql?1. In addition to radon concentration, physicochemical parameters of water such as temperature (T), electrical conductivity, pH and redox potential (Eh) were also measured. The annual effective doses from radon in water due to its ingestion and inhalation were also estimated. The annual effective doses range from 0.2 to 0.75 μSvy?1 for ingestion of radon in water and from 2.44 to 9 μSvy?1 for inhalation of radon released from the water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号