首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method is developed for the determination of energy peak efficiency of 208 keV γ-ray of 237U based on 241Pu/237U secular equilibrium. Plutonium solution was purified to remove Am with Dowex 1 × 2 anion exchange chromatography and the concentration of 241Pu in the purified solution was determined using 242Pu isotope-dilution mass spectrometry on an inductively-coupled plasma mass spectrometry. The solution can be used as calibration source for the determination of energy peak efficiency of 208 keV γ-ray of 237U after 48 days. The method was validated for a planar HPGe detector at the 12 mm above the detector surface. The results showed that this is a simple and economic method for determining the energy peak efficiency of gamma detectors for 208 keV γ-ray of 237U.  相似文献   

2.
A combination alpha and conversion electron spectrometer was developed to quantify 239Pu/240Pu and 238Pu/241Am isotopic ratios of plated sources. The spectrometer was constructed with a commercially available low noise passivated ion-implanted planar silicon (PIPS) detector that was cooled to 77 K with liquid nitrogen. The combination spectrometer was used to quantify alpha-particles, conversion electrons, gamma-rays and X-rays associated with the decay of various plutonium isotopes and 241Am. Two amplifiers operated in parallel with different gains allowed for simultaneous acquisition of the lower energy region (21-60 keV) for internal conversion electrons, gamma-rays and X-rays, and the higher energy region (5050 keV-5550 keV) for alpha-particles. Energy resolutions of 2.2 keV FWHM (full-width at half maximum) for the 38.7 keV M conversion electrons and 11.2 keV for the 5499.2 keV alpha-particles from 238Pu were measured. The energy resolution combined with a spectral deconvolution method was sufficient to be able to quantify the radioactivity using the alpha-spectra as well as the electron spectra; however, quantification of the radioactivity using the internal conversion electron spectra was more problematic because of the presence of X-rays, gamma-rays, Compton scatter electrons and the number of electron peaks present. Deconvolution of the alpha-spectra yielded 239Pu and 240Pu activities (as % of total Pu activity), which differed from expected values by -3.0% to 5.4%. Deconvolution of an internal conversion electron spectrum of a high 239Pu and low 241Am activity sample yielded 239Pu and 240Pu activities, which differed by -17.1 and -35.5% relative to the alpha-measurements, respectively. Determination of the Pu activity using the electron spectra was more problematic in samples where the 241Am activity dominated. Determination of 238Pu and 241Am activity by the electron spectroscopy data was also obtained and compared with the alpha-spectroscopy results. Theoretical investigation of the removal of 241Am or use of a 400 eV electron spectrometer indicated that the internal conversion electron spectra could be used to determine the 238Pu, 239Pu, 240Pu/241Am (when present) activity with and without spectral deconvolution, respectively.  相似文献   

3.
In this work, an approach for determining both the outer dead layer thickness of the p-type coaxial HPGe detector and the inner dead layer thickness of the n-type coaxial HPGe detector was proposed by using two full energy peak area count ratios of a X-ray and a gamma ray emitted from the same radioisotope of 137Cs. Monte Carlo calculations and experimental measurements were conducted to determine these dead layer thicknesses. The results showed that the outer dead layer thickness reached 0.57 ± 0.03 mm on 06 Jan 2017 after nearly 3 years of use for the p-type detector. The inner dead layer thickness reached 1.21 ± 0.24 mm on 01 Aug 2016 after more than 3 years of operation for the n-type detector. Simulation model with the modified dead layer thicknesses was used to estimate full energy peak efficiencies and gamma spectra from seven radioactive sources. The results were in good agreement with the corresponding experimental values in the gamma energy region of interest.  相似文献   

4.
A new system for energy-resolved X-ray fluorescence imaging using a microhole and strip plate (MHSP), a new type of micropattern gas detector (MPGD), is proposed. It works as a single photon counting detector with position and energy detection capability. The interaction of X-rays with the gas medium produces electrons via the photoelectric effect, and the number of electrons is proportional to the absorbed X-ray energy. These electrons are further multiplied in the MHSP. Position detection is achieved using the charge division method. The detector has an active area of 28?×?28 mm2 and shows good position resolution, about σ?=?125 μm, an intrinsic energy resolution of about 14% FWHM for 5.9 keV X-rays, and a counting rate capability of up to 0.5 MHz. The system has shown good properties for energy-dispersive X-ray fluorescence (EDXRF) applications, since it allows efficient energy and position detection of fluorescence X-rays from multielemental samples. In this work, the system was used to study lead depth distributions in eighteenth-century Portuguese faiences from the Santa Clara-a-Velha monastery. The fluorescence images were obtained by irradiating the samples, with a pinhole placed between the sample and the detector to focus the radiation into the detector. The results are presented here, including the elemental map distributions for different samples.  相似文献   

5.
An internal conversion electron spectrometer with high energy resolution has been constructed by using a windowless Si(Li) detector. After its characteristics were examined fundamentally, it was applied to determine the240Pu to239Pu isotope ratio. As a result, the energy resolution realized was demonstrated to be satisfactory.  相似文献   

6.
Variation of virtual point detector (VPD) position inside HPGe detector as a function of source photon energy for the energy range from 26.6 to 1,332 keV was investigated. Although VPD concept was well established for HPGe detectors from 59.5 to 10 MeV, a new attempt was made to obtain VPD positions for photon energies below 59.5 keV. It was found that VPD position shows different functional behavior for the energy ranges 26.6–59.5 keV and 59.5–1,332 keV. The VPD position decreases with increasing energy for 26.6, 31.7, 36.4, and 37.3 keV and increases with the energy until it reaches a plateau. The functional behavior of VPD position for the energy range 26.6–59.5 keV was attributed to the dead layer thickness of the Ge crystal. Monte Carlo simulations were performed to investigate the behavior of VPD position with various dead layer thickness ranging from 100 to 800 μm. It was seen that VPD position increases with increasing energy for 31.7, 59.5, and 80.1 keV more significant at relatively lower energies, but constant for the energies 661–1,332 keV.  相似文献   

7.
A new internal conversion electron spectrometer with high energy resolution has been developed using a windowless Si(Li) detector, and its characteristics are examined and discussed. As a result, it is confirmed that the energy resolutions are 0.48 keV in FWHM for 42 keV electrons and 1.43 keV for 624 keV electrons, respectively.  相似文献   

8.
Most state of the art gas sensor systems based on atmospheric pressure ionization, such ion mobility spectrometers use radioactive beta-sources (e.g. 3H or 63Ni) to provide free electrons with high kinetic energy to initiate a chemical gas phase ionization of the analytes to be detected. Here, we introduce a non-radioactive electron emitter which generates free electrons at atmospheric pressure. Therefore, electrons are generated in a vacuum by field emission and accelerated towards a 300 nm thin 1 mm2 silicon nitride membrane separating the vacuum from atmospheric pressure. Electron currents of about a few hundred microamps can be reached. High energetic electrons of about 10 keV can easily penetrate the membrane without significant loss of kinetic energy. The concept of proximity focusing avoids complex electron lenses to focus the electron beam onto the membrane. The used field emitter tips are made of multi-walled carbon nanotubes. Another benefit of our system is that no insulated power supply operating at high voltage is needed, as necessary for thermo emitters. Here, we show a first prototype of a proximity focused electron gun with field emitting carbon nanotubes. The system is coupled to our drift tube ion mobility spectrometer for validation. Ion mobility spectra similar to those of a 3H ionization source were achieved.  相似文献   

9.
The difficulty to directly detect plutonium in spent nuclear fuel due to the high Compton background of the fission products motivates the design of a gamma detector with improved sensitivity at low energies. We have built such a detector by operating a thin high-purity Ge detector with a large scintillator Compton veto directly behind it. The Ge detector is thin to absorb just the low-energy Pu radiation of interest while minimizing Compton scattering of high-energy radiation from the fission products. The subsequent scintillator is large so that forward-scattered photons from the Ge detector interact in it at least once to provide an anti-coincidence veto for the Ge detector. For highest sensitivity, additional material in the line of sight is minimized, the radioactive sample is kept thin, and its radiation is collimated. We will discuss the instrument design, and demonstrate the feasibility of the approach with a prototype that employs two large CsI scintillator vetoes. Initial spectra of a thin Cs-137 calibration source show a background suppression of a factor of ~2.5 at ~100 keV, limited by an unexpectedly thick 4 mm dead layer in the Ge detector.  相似文献   

10.
The waste drum monitoring system based on HPGe detector was used to study its performance for the estimation of low amounts of plutonium in presence of high activity of 137Cs and 60Co. The counting was carried out by keeping amount of plutonium constant at 100 mg level and varying the count rate for the γ rays of 137Cs and 60Co. Present study has shown that the estimation of low amount of 239Pu in a waste drum can be carried out using 129 keV γ ray in the presence of 137Cs up to an activity level of 16 mCi and in the presence of 60Co up to an activity level of 8 mCi.  相似文献   

11.
Eight elastomeric composites (NRU, GR1–GR4, NRBG08–NRBG24) containing mixtures of different proportions of heavy metal additives (Bi, W, Gd and Sb) have been synthesized and examined as protective shields. The NRU sample was a pure rubber matrix and served as a reference sample for heavy metal modified composites. Experimental procedure used for evaluation of the composite shields and their attenuation properties was based on the utilization of HPGe spectrometry and analysis of X-ray fluorescence radiation intensity of the heavy metal additives in the following energy ranges for: Sb (20–35 keV), Gd (35–55 keV), W (55–70 keV) and Bi (70–90 keV). The main contributor to the induced X-ray fluorescence radiation within the shield is Bi additive and the intensity of the X-ray radiation generated within the energy range of 70–90 keV strongly depends on its concentration. It was found that decreasing concentration of the Bi fraction from 0.35 (GR samples) to 0.15 (NRBG samples) results in significant lowering Bi X-ray fluorescence radiation within the 70–90 keV energy range. Secondary effect of decreasing Bi concentration was efficient diminishing excitation processes for lower Z heavy metal additives (W, Gd and Sb, GR vs. NRBG samples). As the final quality parameter of the shielding properties for the examined elastomers, dose reduction factor (DRF) coefficients were calculated for each shield. It was found, that the best shielding properties are observed for composites with lower Bi concentration (0.15 vs. 0.35 Bi mass fraction) with only slight further improvement of their parameters (DRF) with increasing of Gd concentration (Gd mass fraction 0.08, 0.16 and 0.24). The most efficient dose reduction composite was found to be NRBG24 elastomer with DRF value 0.47 (53 % dose reduction) for ca. 2 mm and 0.44 g/cm2 layer thickness.  相似文献   

12.
Targets of isotopically enriched 170Er (erbium) were prepared on 45 μg/cm2 carbon backing using the method of vacuum evaporation. Another layer of carbon with thickness 23 μg/cm2 was deposited on it as a protective cap with the help of an electron gun. Carbon backing, Er and the capping carbon layer were deposited using resistive heating and electron gun deposition without disturbing the vacuum. The thickness of 170Er was measured by X-ray fluorescence analysis as well as with Rutherford backscattering spectrometry and it was found to be 150 μg/cm2. Successful preparation of sandwiched targets was very sensitive to substrate temperature, deposition rate, duration of in situ annealing, cooling rate etc.  相似文献   

13.
14.
Stary  Vladimir 《Mikrochimica acta》1994,114(1):463-474
By the method of Monte Carlo calculation, the dependence of the signal-to-background ratio of detected X-rays on the energy of electrons as well as on the thickness of the sample was calculated. The range of energy was 40 ÷ 120 keV, the range of thickness was approximately 8 ÷ 80 g/cm2 (40 ÷ 400 nm at density = 2 g/cm3). The results were compared with measurements in electron microscope on thin resin standard for biological microanalysis. The measured dependence of signal-to-background ratio on the energy of electrons has the maximum at 80 keV, the calculated one changes at increased thickness from a monotonic form to one with a maximum at a particular thickness. The absolute values (Hall correction procedure was used for measured values) differs mainly at the highest energy used (120 keV); the difference is probably caused by unproper correction of measured value of background at this energy. Simultaneously, the source distribution of emitted X-ray photons is calculated. Its knowledge gives the possibility to estimate simply the interaction volume diameter and, by this way, to determine the spatial resolution of electron probe X-ray microanalysis.  相似文献   

15.
Electron flood guns used for charge compensation in secondary ion mass spectrometry (SIMS) cause chemical degradation. In this study, the effect of electron flood gun damage on argon cluster depth profiling is evaluated for poly(vinylcarbazole), 1,4-bis((1-naphthylphenyl)amino)biphenyl and Irganox 3114. Thin films of these three materials are irradiated with a range of doses from a focused beam of 20 eV electrons used for charge neutralization. SIMS chemical images of the irradiated surfaces show an ellipsoidal damaged area, approximately 3 mm in length, created by the electron beam. In depth profiles obtained with 5 keV Ar2000 + sputtering from the vicinity of the damaged area, the characteristic ion signal intensity rises from a low level to a steady state. For the damaged thin films, the ion dose required to sputter through the thin film to the substrate is higher than for undamaged areas. It is shown that a damaged layer is formed and this has a sputtering yield that is reduced by up to an order of magnitude and that the thickness of the damaged layer, which increases with the electron dose, can be as much as 20 nm for Irganox 3114. The study emphasizes the importance of minimizing the neutralizing electron dose prior to the analysis. Figure
?  相似文献   

16.
Two extraction processes of plutonium (Pu) on planchets from alpha spectrometry (AS) have been evaluated by inductively coupled plasma sector field mass spectrometry with a desolvator system (Aridus–ICP–SFMS). The samples were traced with known concentrations of 239Pu (1.2 × 103 fg) and 242Pu (2 × 103 fg) followed by an electrodeposition in planchets, according to the Hallstadius method. The processes of extraction were carried out with 50 mL of 0.36 mol L?1 HNO3 every 30 min up to 180 min in a glass beaker at 60 °C. The first process was on a hotplate and the second used an ultrasonic system. Finally, samples were evaporated to dryness, and resuspended in 10 mL of 0.72 mol L?1 HNO3 for evaluation. The results showed that at 120 min, a ~70 % recovery of 239Pu and a ~80 % recovery of 242Pu in both processes were obtained. The average recoveries of 239Pu and 242Pu at 180 min using the hotplate in plate were 93.4 ± 4.6 and 93.7 ± 4.2 % respectively, and with the ultrasonic system were 96.0 ± 4.3 and 98.2 ± 1.0 % respectively. In conclusion, both processes are suitable for Pu extraction, and Aridus–ICP–SFMS is an essential technique for the reassessments and quantification of Pu. In addition, procedural blanks spiked with 1 × 102 fg mL?1 U were prepared for each process, in order to study the contribution of the 238U on the background signal at m/z = 239, which was 0.5 ± 0.2 cps, indicating that the contribution of 238U on the 239Pu signal was negligible. Furthermore, this methodology can be applied to sample planchets with environmental, food, biological and nuclear origin, and thereby to avoid repetitive analysis when Pu concentration determined by AS are under minimum detectable activities.  相似文献   

17.
A simple technique for pulse shape discrimination in HPGe-detectors of the so-called BEGe type, based on just one parameter obtained from one signal read out, is presented here. This technique allows discriminating between pulses generated when the deposited energy is located within a small region of about 1 mm3 from the pulses generated when the energy is deposited at different locations several mm or cm apart. Two possible applications using this technique are: (i) experiments that look for neutrinoless double β decay in 76Ge, such as GERDA; (ii) γ spectrometry measurements where the Compton continuum can be reduced and the efficiency for cascading γ-rays can remain high. With this active background reduction technique a Compton suppression factor of about 3 was obtained. The detector response may be influenced by the detector size. The detector used for this study had a diameter of 6 cm, a thickness of 2.6 cm and a relative efficiency of 19%. The results obtained with this detector were consistent with the results obtained by Budjá? et al. [J Instrum 4:10, 2009] with a 50% relative efficiency BEGe detector.  相似文献   

18.
Alpha spectrometry is an extremely useful and sensitive for detection of alpha-emitting nuclides. Contamination of the silicon detectors for low-level alpha spectrometry by recoil nuclides is a serious problem in the measurement of alpha emitters decaying to daughter nuclides with short half-lives. This unwanted contamination leads to decreased measurement sensitivity causing a degradation of the limit of detection. The simplest method to prevent this radioactive contamination of detector is to use a catcher film between the alpha source and the detector. In this work we describe the obtaining of the thin formvar films as stopper foils for recoil nuclei and we investigated the influence of these films on alpha spectrometry parameters, as energy shift (~30 keV) and resolution (~7%). No significant deterioration of the alpha spectrometry parameters was observed when using thin formvar films. Using the ASTAR web databases, which calculate stopping powers for alpha particles, the thickness of formvar films was estimated to be about 5.355 × 10−5 g/cm2. The measurements were performed with an ORTEC SOLOIST alpha spectrometer with PIPS detector.  相似文献   

19.
Quantification of actinides in the complex environmental, biological, process and waste streams samples requires multiple steps like selective preconcentration and matrix elimination, solid source preparations generally by evaporation or electrodeposition, and finally alpha spectrometry. To minimize the sample manipulation steps, a membrane based isotope dilution alpha spectrometry method was developed for the determination of plutonium concentrations in the complex aqueous solutions. The advantages of this method are that it is Pu(IV) selective at 3 M HNO3, high preconcentration factor can be achieved, and obviates the need of solid source preparation. For this, a thin phosphate-sulfate bifunctional polymer layer was anchored on the surface of microporous poly(ethersulfone) membrane by UV induced surface grafting. The thickness of the bifunctional layer on one surface of the poly(ethersulfone) membrane was optimized. The thickness, physical and chemical structures of the bifunctional layer were studied by secondary ionization mass spectrometry (SIMS), scanning electron microscopy (SEM) and SEM-EDS (energy-dispersive spectroscopy). The optimized membrane was used for preconcentration of Pu(IV) from aqueous solutions having 3-4 M HNO3, followed by direct quantification of the preconcentrated Pu(IV) by isotope dilution alpha spectrometry using 238Pu spike. The chemical recovery efficiency of Pu(IV) was found to be 86 ± 3% below Pu(IV) loading capacity (1.08 μg in 2 × 1 cm2) of the membrane sample. The experiments with single representative actinides indicated that Am(III) did not sorb to significant extent (7%) but U(VI) sorbed with 78 ± 3% efficiency from the solutions having 3 M HNO3 concentration. However, Pu(IV) chemical recovery in the membrane remained unaffected from the solution containing 1:1000 wt. proportion of Pu(IV) to U(VI). Pu concentrations in the (U, Pu)C samples and in the irradiated fuel dissolver solutions were determined. The results thus obtained were found to be in good agreement with those obtained by conventional alpha spectrometry, biamperometry and thermal ionization mass spectrometry.  相似文献   

20.
Alpha spectroscopy can be used to quantify actinide (e.g., U, Pu) concentration in a molten salt electrorefining environment. One could electroplate actinide samples directly onto a semiconductor alpha particle detector to obtain representative isotopic concentrations from a measured alpha particle energy spectrum. In this work, we fabricated a SiC Schottky device that can be partially biased to a depletion depth of 8.8 µm that is able to measure the energy spectrum of 4.012 MeV alpha particles emitted from a thorium film with a thickness. We also present a method in calculating the thickness of a medium thick alpha source with a dE/dx detector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号