首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forced convection heat transfer of non-Newtonian nanofluids in a circular tube with constant wall temperature under turbulent flow conditions was investigated experimentally. Three types of nanofluids were prepared by dispersing homogeneously γ-Al2O3, TiO2 and CuO nanoparticles into the base fluid. An aqueous solution of carboxymethyl cellulose (CMC) was used as the base fluid. Nanofluids as well as the base fluid show shear-thinning (pseudoplastic) rheological behavior. Results indicate that the convective heat transfer coefficient of nanofluids is higher than that of the base fluid. The enhancement of the convective heat transfer coefficient increases with an increase in the Peclet number and the nanoparticle concentration. The increase in the convective heat transfer coefficient of nanofluids is greater than the increase that would be observed considering strictly the increase in the effective thermal conductivity of nanofluids. Experimental data were compared to heat transfer coefficients predicted using available correlations for purely viscous non-Newtonian fluids. Results show poor agreement between experimental and predicted values. New correlation was proposed to predict successfully Nusselt numbers of non-Newtonian nanofluids as a function of Reynolds and Prandtl numbers.  相似文献   

2.
3.
Formulation of nanofluids for natural convective heat transfer applications   总被引:7,自引:0,他引:7  
The paper is concerned about formulation of aqueous based nanofluids and its application under natural convective heat transfer conditions. Titanium dioxide nanoparticles are dispersed in distilled water through electrostatic stabilization mechanisms and with the aid of a high shear mixing homogenizer. Nanofluids formulated in such a way are found very stable and are used to investigate their heat transfer behaviour under the natural convection conditions. The preliminary results are presented in this paper. Both transient and steady heat transfer coefficients are measured and the results show a systematic decrease in the natural convective heat transfer coefficient with increasing particle concentration. This is in contradiction to the initial expectation. Possible reasons for the observations are discussed.  相似文献   

4.
5.
In this study, nanofluids with different TiO2 nanoparticle concentrations were synthesized and measured in different constant heat fluxes for their heat transfer behavior upon flowing through a vertical pipe. Addition of nanoparticles into the base fluid enhances the forced convective heat transfer coefficient. The results show that the enhancement of the convective heat transfer coefficient in the mixture consisting of ethylene glycol and distilled water is more than distilled water as a base fluid.  相似文献   

6.
In this study, steady-state forced convection heat transfer and pressure drop characteristics for hydrodynamically fully developed thermally developing three-dimensional turbulent flow in a horizontal smooth trapezoidal duct with corner angle of 75° and hydraulic diameter of 0.043 m were both experimentally and numerically investigated in the Reynolds number range from 2.6 × 103 to 67 × 103 for isothermal conditions. Results have shown that there is a good agreement between the present experimental and numerical results.  相似文献   

7.
In a recent paper we have investigated mixing and heat transfer enhancement in a mixer composed of two circular rods maintained vertically in a cylindrical tank. The rods and tank can rotate around their revolution axes while their surfaces were maintained at a constant temperature. In the present study we investigate the differences in the thermal mixing process arising from the utilization of a constant heat flux as a boundary condition. The study concerns a highly viscous fluid with a high Prandtl number for which this chaotic mixer is suitable. By solving numerically the flow and energy equations, and using different statistical tools we characterize the evolution of the fluid temperature and its homogenization. Fundamental differences are reported between these two modes of heating or cooling: while the mixing with an imposed temperature results in a homogeneous temperature field, with a fixed heat flux we observe a constant difference between the maximal and minimal temperatures that establish in the fluid; the extent of this difference is governed by the efficiency of the mixing protocol.  相似文献   

8.
9.
This study describes an investigation on the convective heat transfer performance of aqueous suspensions of multiwalled carbon nanotubes. The results suggested an increase on heat transfer coefficient of 47 % for 0.5 % volume fraction. Moreover, the enhancement observed during thermal conductivity assessment, cannot fully explain the heat transfer intensification. This could be associated to the random movements among the particles through a fluid, caused by the impact of the base fluid molecules.  相似文献   

10.
The convective boiling characteristics of dilute dispersions of CuO nanoparticles in water/ethylene glycol as a base fluid were studied at different operating conditions of (heat fluxes up to 174 kW m?2, mass fluxes range of 353–1,059 kg m?2 s?1 and sub-cooling level of 343, 353 and 363 K) inside the annular duct. The convective boiling heat transfer coefficients of nanofluids in different concentrations (vol%) of nanoparticles (0.5, 1, and 1.5) were also experimentally quantified. Results demonstrated the significant augmentation of heat transfer coefficient inside the region with forced convection dominant mechanism and deterioration of heat transfer coefficient in region with nucleate boiling dominant heat transfer mechanism. Due to the scale formation around the heating section, fouling resistance was also experimentally measured. Experimental data showed that with increasing the heat and mass fluxes, the heat transfer coefficient and fouling resistance dramatically increase and rate of bubble formation clearly increases. Obtained results were then compared to some well-known correlations. Results of these comparisons demonstrated that experimental results represent the good agreement with those of obtained by the correlations. Consequently, Chen correlation is recommended for estimating the convective flow boiling heat transfer coefficient of dilute CuO-water/ethylene glycol based nanofluids.  相似文献   

11.
12.
13.
To investigate the convective heat transfer of nanofluids, experiments were performed using silver–water nanofluids under laminar, transition and turbulent flow regimes in a horizontal 4.3 mm inner-diameter tube-in-tube counter-current heat transfer test section. The volume concentration of the nanoparticles varied from 0.3% to 0.9% in steps of 0.3%, and the effects of thermo-physical properties, inlet temperature, volume concentration, and mass flow rate on heat transfer coefficient were investigated. Experiments showed that the suspended nanoparticles remarkably increased the convective heat transfer coefficient, by as much as 28.7% and 69.3% for 0.3% and 0.9% of silver content, respectively. Based on the experimental results a correlation was developed to predict the Nusselt number of the silver–water nanofluid, with ±10% agreement between experiments and prediction.  相似文献   

14.
15.
This note presents transient motion of a viscous and incompressible fluid in a vertical channel due to free convective currents occuring as a result of application of constant heat flux at one wall and constant temperature on other wall. The method of Laplace transform is used to solve the problem. The transient behaviour of flow on velocity and temperature fields are shown on the graphs.  相似文献   

16.
A high accuracy, counter flow double pipe heat exchanger system is designed for the measurement of convective heat transfer coefficients with different nanofluids. Both positive and negative enhancement of convective heat transfer of alumina nanofluids are found in the experiments. A modified equation was proposed to explain above phenomena through the physic properties of nanofluids such as thermal conductivity, special heat capacity and viscosity.  相似文献   

17.
The problem of laminar natural convection flow over a slender frustrum of a cone with constant wall heat flux is treated in this paper. The governing differential equations are solved by a combination of quasilinearization and finite-difference methods. Numerical solutions are obtained for Prandtl numbers from 0.1 to 100 for a range of values of transverse curvature parameter. It is found that the effect of transverse curvature is of great significance in such flows.
Laminare natürliche Konvektion über einem dünnen, senkrechten Kegelstumpf mit konstantem Wand wär mestrom
Zusammenfassung In dieser Arbeit wird das Problem der laminaren, natürlichen Konvektionsströmung öber einem dünnen Kegelstumpf mit konstantem Wandwärmestrom behandelt. Die maßgeblichen Differentialgleichungen werden mit Hilfe einer Kombination von Quasilinearisierung und Differenzenverfahren gelöst. Numerische Lösungen werden für die Prandtl ' sehen Zahlen zwischen 0. l und 100 innerhalb eines Bereiches von Querkrüm mungswerten erhalten. Es wird gezeigt, daß der Einfluß der Querkrümmung in solchen Strömungen von großer Bedeutung ist.

Nomenclature A,B,C constants in the transformation, defined in Eq.(14) - f dependent variable, defined in Eq. (7) - g dependent variable, defined in Eq. (7) - ge gravitational acceleration - k heat conductivity - kn -grid - L characteristic length - Nu Nusselt number - Pr Prandtl number - qw wall heat flux - r radial distance from the axis of the cone - RTVC transverse curvature ratio, defined in Eq.(28) - Re Reynolds number - T temperature - u,v velocity components in the x- and y-directions, respectively - x,y rectangular coordinates Greek Letters dimensionless temperature, defined in Eq.(4) - bulk modulus - cone angle - dynamic viscosity - stream function - , transformed independent variables, defined in Eq. (7) - transverse curvature parameter  相似文献   

18.
 Extensive measurements of the intensive cooling of hot-rolled wires with temperatures between 1000 °C and 1100 °C are analysed. The analysis proves the existence of a convection-controlled boiling region, which has been previously observed by few authors in the case of high mass fluxes and high liquid subcooling. This region is characterised by an independence of the heat flux of the surface temperature. The heat flux depends essentially on the Reynolds number, the main influence parameter of the single phase convection, and on the liquid subcooling. Received on 13 September 1999  相似文献   

19.
This paper reports the numerical modeling of turbulent flow and convective heat transfer over a wavy wall using a two equations eddy viscosity turbulence model. The wall boundary conditions were applied by using a new zonal modeling strategy based on DNS data and combining the standard k– turbulence model in the outer core flow with a one equation model to resolve the near-wall region.It was found that the two-layer model is successful in capturing most of the important physical features of a turbulent flow over a wavy wall with reasonable amount of memory storage and computer time. The predicted results show the shortcomings of the standard law of the wall for predicting such type of flows and consequently suggest that direct integrations to the wall must be used instead. Moreover, Comparison of the predicted results of a wavy wall with that of a straight channel, indicates that the averaged Nusselt number increases until a critical value is reached where the amplitude wave is increased. However, this heat transfer enhancement is accompanied by an increase in the pressure drop.  相似文献   

20.
We investigate the problem of the unsteady mixed convection peristaltic mechanism. The flow includes a temperature-dependent viscosity with thermal diffusion and diffusion-thermo effects. The peristaltic flow is between two vertical walls, one of which is deformed in the shape of traveling transversal waves exactly like peristaltic pumping and the other of which is a parallel flat plate wall. The equations of momentum, energy, and concentration are subject to a set of appropriate boundary conditions by assuming that the solution consists of two parts: a mean part and a perturbed part. The solution of the perturbed part has been obtained by using the long-wave approximation. The mean part has been solved and coincides with the approximation of Ostrach. The mean part (zeroth order), the first order, and the total solution of the problem have been evaluated numerically for several sets of values of the parameters entering the problem. The skin friction, and the rate of heat and mass transfer at the walls are obtained and illustrated graphically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号