首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we report negative electron affinities of NO(2)(-).(H2O)n clusters (n=0-30) obtained from density functional theory calculations and a simple correction to Koopmans' theorem. The method relies on the calculation of the detachment energy of the monoanion and its highest occupied molecular orbital and lowest unoccupied molecular orbital energies, and explicit calculations on the dianion itself are avoided. A good agreement with resonances in the cross section for neutral production in electron scattering experiments is found for n=0, 1, and 2. We find several isomeric structures of NO(2)(-).(H2O)2 of similar energy that elucidate the interplay between water-water and ion-water interactions. The topology is predicted to influence the electron affinity by 0.5 and 0.4 eV for NO(2)(-).(H2O) and NO(2)(-).(H2O)2, respectively. The electron affinity of larger clusters is shown to follow a (n+delta)-1/3 dependence, where delta=3 represents the number of water molecules that in volume, could replace NO(2) (-).  相似文献   

2.
We report that the absolute cross sections for dissociative attachment of approximately 0 eV electrons to chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are strongly enhanced by the presence of H2O ice. The absolute cross sections for CFCl3, CHF2Cl, and CH3CF2Cl on water ice are measured to be approximately 8.9 x 10(-14), approximately 5.1 x 10(-15), and approximately 4.9 x 10(-15) cm2 at approximately 0 eV, respectively. The former value is about 1 order of magnitude higher than that in the gas phase, while the latter two are 3-4 orders higher. In contrast, the resonances at electron energies > or = 2.0 eV are strongly suppressed either for CFCs and HCFCs or for CF4 adsorbed on H2O ice. The cross-section enhancement is interpreted to be due to electron transfer from precursor states of the solvated electron in ice to an unfilled molecular orbital of CFCs or HCFCs followed by its dissociation. This study indicates that electron-induced dissociation is a significant process leading to CFC and HCFC fragmentation on ice surfaces.  相似文献   

3.
Photoelectron spectroscopy is combined with ab initio calculations to study the microsolvation of the dicyanamide anion, N(CN)(2)(-). Photoelectron spectra of [N(CN)(2)(-)](H2O)n (n = 0-12) have been measured at room temperature and also at low temperature for n = 0-4. Vibrationally resolved photoelectron spectra are obtained for N(CN)(2)(-), allowing the electron affinity of the N(CN)2 radical to be determined accurately as 4.135 +/- 0.010 eV. The electron binding energies and the spectral width of the hydrated clusters are observed to increase with the number of water molecules. The first five waters are observed to provide significant stabilization to the solute, whereas the stabilization becomes weaker for n > 5. The spectral width, which carries information about the solvent reorganization upon electron detachment in [N(CN)(2)(-)](H2O)n, levels off for n > 6. Theoretical calculations reveal several close-lying isomers for n = 1 and 2 due to the fact that the N(CN)(2)(-) anion possesses three almost equivalent hydration sites. In all the hydrated clusters, the most stable structures consist of a water cluster solvating one end of the N(CN)(2)(-) anion.  相似文献   

4.
We report electron impact total cross sections, Q(T), for e-N(2)O scattering over an extensive range of impact energies approximately from 0.1 eV to 2000 eV. We employ an ab initio calculation using R-matrix formalism below the ionization threshold of the target and above it we use the well established spherical complex optical potential to compute the cross sections. Total cross section is obtained as a sum of total elastic and total electronic excitation cross sections below the ionization threshold and above the ionization threshold as a sum of total elastic and total inelastic cross sections. Ample cross section data for e-N(2)O scattering are available at low impact energies and hence meaningful comparisons are made. Good agreement is observed with the available theoretical as well as experimental results over the entire energy range studied here.  相似文献   

5.
By a systematic examination on Na(H2O)n, with n = 4-7, 9, 10, and 15, we demonstrate that a hydrogen loss reaction can be initiated by a single sodium atom with water molecules. This reaction is similar to the well-known size-dependent intracluster hydrogen loss in Mg+(H2O)n, which is isoelectronic to Na(H2O)n. However, with one less charge on Na(H2O)n than that on Mg+(H2O)n, the hydrogen loss for Na(H2O)n is characterized by a higher barrier and a more flexible solvation shell around the metal ion, although the reaction should be accessible, as the lowest barrier is around 8 kcal/mol. Interestingly, the hydroxide ion OH- produced in the process is stabilized by the solvation of H2O molecules and the formation of an ion pair Na+(H2O)4(H2O)n-l-4[OH-(H2O)l]. The activation barrier is reduced as the unpaired electron in Na(H2O)n moves to higher solvation shells with increasing cluster size, and the reaction is not switched off for larger clusters. This is in sharp contrast to the reaction for Mg+(H2O)n, in which the OH- ion is stabilized by direct coordination with Mg2+ and the reaction is switched off for n > 17, as the unpaired electron moved to higher solvation shells. Such a contrast illustrates the important link between microsolvation environment and chemical reactivity in solvation clusters.  相似文献   

6.
1,1-difluoroethylene (1,1-C2H2F2) molecules have been studied for the first time experimentally and theoretically by electron and positron impact. 0.4-1000 eV electron and 0.2-1000 eV positron impact total cross sections (TCSs) were measured using a retarding potential time-of-flight apparatus. In order to probe the resonances observed in the electron TCSs, a crossed-beam method was used to investigate vibrational excitation cross sections over the energy range of 1.3-49 eV and scattering angles 90 degrees and 120 degrees for the two loss energies 0.115 and 0.381 eV corresponding to the dominant C-H (nu2 and nu9) stretching and the combined C-F (nu3) stretching and CH2 (nu11) rocking vibrations, respectively. Electron impact elastic integral cross sections are also reported for calculations carried out using the Schwinger multichannel method with pseudopotentials for the energy range from 0.5 to 50 eV in the static-exchange approximation and from 0.5 to 20 eV in the static-exchange plus polarization approximation. Resonance peaks observed centered at about 2.3, 6.5, and 16 eV in the TCSs have been shown to be mainly due to the vibrational and elastic channels, and assigned to the B2, B1, and A1 symmetries, respectively. The pi* resonance peak at 1.8 eV in C2H4 is observed shifted to 2.3 eV in 1,1-C2H2F2 and to 2.5 eV in C2F4; a phenomenon attributed to the decreasing C=C bond length from C2H4 to C2F4. For positron impact a conspicuous peak is observed below the positronium formation threshold at about 1 eV, and other less pronounced ones centered at about 5 and 20 eV.  相似文献   

7.
Valence and dipole-bound negative ions of the nitroethane (NE) molecule and its clusters are studied using photoelectron spectroscopy (PES), Rydberg electron transfer (RET) techniques, and ab initio methods. Valence adiabatic electron affinities (EA(a)s) of NE, C(2)H(5)NO(2), and its clusters, (C(2)H(5)NO(2))(n), n=2-5, are estimated using vibrationally unresolved PES to be 0.3+/-0.2 eV (n=1), 0.9+/-0.2 eV (n=2), 1.5+/-0.2 eV (n=3), 1.9+/-0.2 eV (n=4), and 2.1+/-0.2 eV (n=5). These energies were then used to determine stepwise anion-neutral solvation energies and compared with previous literature values. Vertical detachment energies for (C(2)H(5)NO(2))(n)(-) were also measured to be 0.92+/-0.10 eV (n=1), 1.63+/-0.10 eV (n=2), 2.04+/-0.10 eV (n=3), and 2.3+/-0.1 eV (n=4). RET experiments show that Rydberg electrons can be attached to NE both as dipole-bound and valence bound anion states. The results are similar to those found for nitromethane (NM), where it was argued that the diffuse dipole state act as a "doorway state" to the more tightly bound valence anion. Using previous models for relating the maximum in the RET dependence of the Rydberg effective principle number n(max)(*), the dipole-bound electron affinity is predicted to be approximately 25 meV. However, a close examination of the RET cross section data for NE and a re-examination of such data for NM finds a much broader dependence on n(*) than is seen for RET in conventional dipole bound states and, more importantly, a pronounced [l] dependence is found in n(max)(*) (n(max)(*) increases with [l]). Ab initio calculations agree well with the experimental results apart from the vertical electron affinity value associated with the dipole bound state which is predicted to be 8 meV. Moreover, the calculations help to visualize the dramatic difference in the distributions of the excess electron for dipole-bound and valence states, and suggest that NE clusters form only anions where the excess electron localizes on a single monomer.  相似文献   

8.
Experimental absolute cross sections for dissociative electron attachment (DEA) to Pt(PF(3))(4) are presented. Fragment anions resulting from the loss of one, two, three and four PF(3) ligands as well as the Pt(PF(3))F(-) and the F(-) ions were observed. The parent anion Pt(PF(3)) is too short-lived to be detected. The dominant process is loss of one ligand, with a very large cross section of 20?000 pm(2); the other processes are about 200× weaker, with cross sections around 100 pm(2), the naked Pt(-) anion is formed with a cross section of only 1.8 pm(2). The resonances responsible for the DEA bands were assigned based on comparison with electron energy-loss spectra and spectra of vibrational excitation by electron impact. Bands around 0.5 eV and 2 eV were assigned to shape resonances with single occupation of virtual orbitals. A DEA band at 5.9 eV was assigned to a core-excited resonance corresponding to an electron very weakly bound to the lowest excited state. An F(-) band at 12.1 eV is assigned to a core excited resonance with a vacancy in an orbital corresponding to the 2nd ionization energy of the PF(3) ligand. Implications of these findings for FEBIP are discussed.  相似文献   

9.
The bond dissociation energies for losing one water from Cd(2+)(H(2)O)(n) complexes, n = 3-11, are measured using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer coupled with a thermal electrospray ionization source. Kinetic energy dependent cross sections are obtained for n = 4-11 complexes and analyzed to yield 0 K threshold measurements for loss of one, two, and three water ligands after accounting for multiple collisions, kinetic shifts, and energy distributions. The threshold measurements are converted from 0 to 298 K values to give the hydration enthalpies and free energies for sequentially losing one water from each complex. Theoretical geometry optimizations and single point energy calculations are performed on reactant and product complexes using several levels of theory and basis sets to obtain thermochemistry for comparison to experiment. The charge separation process, Cd(2+)(H(2)O)(n) → CdOH(+)(H(2)O)(m) + H(+)(H(2)O)(n-m-1), is also observed for n = 4 and 5 and the competition between this process and water loss is analyzed. Rate-limiting transition states for the charge separation process at n = 3-6 are calculated and compared to experimental threshold measurements resulting in the conclusion that the critical size for this dissociation pathway of hydrated cadmium is n(crit) = 4.  相似文献   

10.
To understand the autoionization of pure water and the solvation of ammonia in water, we investigated the undissociated and dissociated (ion-pair) structures of (H2O) n and NH3(H2O)n-1 (n = 5, 8, 9, 21) using density functional theory (DFT) and second order Moller-Plesset perturbation theory (MP2). The stability, thermodynamic properties, and infrared spectra were also studied. The dissociated (ion-pair) form of the clusters tends to favor the solvent-separated ion-pair of H3O+/NH4+ and OH-. As for the NH3(H2O)20 cluster, the undissociated structure has the internal conformation, in contrast to the surface conformation for the (H2O)21 cluster, whereas the dissociated structure of NH3(H2O)20 has the surface conformation. As the cluster size of (H2O)n/NH3(H2O)n-1 increases, the difference in standard free energy between undissociated and dissociated (ion-pair) clusters is asymptotically well corroborated with the experimental free energy change at infinite dilution of H3O+/NH4+ and OH-. The predicted NH and OH stretching frequencies of the undissociated and dissociated (ion-pair) clusters are discussed.  相似文献   

11.
Femtosecond transient absorption spectroscopy is used to study the primary reaction dynamics of photoinduced electron detachment of the hydroxide ion in water, OH- (aq). The electron is detached by excitation of OH- (aq) to the charge-transfer-to-solvent (CTTS) state at 200 nm. The subsequent relaxation processes are probed in the spectral range from 193 to 800 nm with femtosecond time resolution. We determine both the time-dependent quantum yields of OH- (aq), OH(aq), and e-(aq), and we observe a transient spectral signature which is assigned to relaxation of hot (OH-)* ions formed via solvent-assisted conversion of the excited CTTS state to OH-. The primary quantum yield of OH(aq) is 65 +/- 5%, while recombination with e-(aq) reduces the yield to 34% after 5 ps and 12% after 200 ps. The yield of hot (OH-)* ions is 35 +/- 5%. Rotational anisotropy measurements of OH- (aq) and OH(aq) indicate a reorientation time for OH- (aq) of 1.9 ps, while no rotational anisotropy is resolved for the OH(aq) radical within our time resolution of 0.3 ps. This is consistent with the notion that OH(aq) radicals formed after electron detachment are only weakly bound to the hydrogen bond network of water. The assignment of the experimental data is supported by a series of electronic structure calculations of simple complexes of OH- (H(2)O)(n).  相似文献   

12.
The endothermic proton transfer reaction, H2+(upsilon+)+He-->HeH+ + H(DeltaE=0.806 eV), is investigated over a broad range of reactant vibrational levels using high-resolution vacuum ultraviolet to prepare reactant ions either through excitation of autoionization resonances, or using the pulsed-field ionization-photoelectron-secondary ion coincidence (PFI-PESICO) approach. In the former case, the translational energy dependence of the integral reaction cross sections are measured for upsilon+=0-3 with high signal-to-noise using the guided-ion beam technique. PFI-PESICO cross sections are reported for upsilon+=1-15 and upsilon+=0-12 at center-of-mass collision energies of 0.6 and 3.1 eV, respectively. All ion reactant states selected by the PFI-PESICO scheme are in the N+=1 rotational level. The experimental cross sections are complemented with quasiclassical trajectory (QCT) calculations performed on the ab initio potential energy surface provided by Palmieri et al. [Mol. Phys. 98, 1839 (2000)]. The QCT cross sections are significantly lower than the experimental results near threshold, consistent with important contributions due to resonances observed in quantum scattering studies. At total energies above 2 eV, the QCT calculations are in excellent agreement with the present results. PFI-PESICO time-of-flight (TOF) measurements are also reported for upsilon+=3 and 4 at a collision energy of 0.6 eV. The velocity inverted TOF spectra are consistent with the prevalence of a spectator-stripping mechanism.  相似文献   

13.
Dissociative recombination (DR) of the water cluster ions H(+)(H(2)O)(3) and D(+)(D(2)O)(3) with electrons has been studied at the heavy-ion storage ring CRYRING (Manne Siegbahn Laboratory, Stockholm University). For the first time, absolute DR cross sections have been measured for H(+)(H(2)O)(3) in the energy range of 0.001-0.8 eV, and relative cross sections have been measured for D(+)(D(2)O)(3) in the energy range of 0.001-1.0 eV. The DR cross sections for H(+)(H(2)O)(3) are larger than previously observed for H(+)(H(2)O)(n) (n=1,2), which is in agreement with the previously observed trend indicating that the DR rate coefficient increases with size of the water cluster ion. Branching ratios have been determined for the dominating product channels. Dissociative recombination of H(+)(H(2)O)(3) mainly results in the formation of 3H(2)O+H (probability of 0.95+/-0.05) and with a possible minor channel resulting in 2H(2)O+OH+H(2) (0.05+/-0.05). The dominating channels for DR of D(+)(D(2)O)(3) are 3D(2)O+D (0.88+/-0.03) and 2D(2)O+OD+D(2) (0.09+/-0.02). The branching ratios are comparable to earlier DR results for H(+)(H(2)O)(2) and D(+)(D(2)O)(2), which gave 2X(2)O+X (X=H,D) with a probability of over 0.9.  相似文献   

14.
A detailed analysis of the (35)Cl/(37)Cl isotope shifts induced in the 128.8 MHz (195)Pt NMR resonances of [PtCl(n)(H(2)O)(6 - n)](4 - n) complexes (n = 6,5,4) in acidic solution at 293 K, shows that the unique isotopologue and isotopomer distribution displayed by the resolved (195)Pt resonances, serve as a fingerprint for the unambiguous identification and assignment of the isotopic stereoisomers of [PtCl(5)(H(2)O)](-) and cis/trans-[PtCl(4)(H(2)O)(2)].  相似文献   

15.
The optimized geometries, adiabatic electron affinities, vertical electron affinities, vertical electron detachment energies (for the anions), and IR-active vibrational frequencies have been predicted for the long linear carbon chains HC(2)(n)()(+1)H (n = 4-11). The B3LYP density functional combined with DZP and TZ2P basis sets was used in this theoretical study. These methods have been extensively calibrated versus experiment for the prediction of electron affinities (Chem. Rev. 2002, 102, 231). The computed physical properties are discussed and compared with the even carbon chains HC(2)(n)()H. The predicted electron affinities form a remarkably regular sequence: 2.12 eV (HC(9)H), 2.42 eV (HC(11)H), 2.66 eV (HC(13)H), 2.85 eV (HC(15)H), 3.01 eV (HC(17)H), 3.14 eV (HC(19)H), 3.25 eV (HC(21)H), and 3.35 eV (HC(23)H). These electron affinities are as much as 0.4 eV higher than those for analogous even carbon chains. The predicted structures display an intermediate cumulene-polyacetylene type of bonding, with the inner carbons appearing cumulenic and the outer carbons polyacetylenic.  相似文献   

16.
Reactions of size-selected copper cluster cations and anions, Cu(n)(±), with O(2) and CO have been systematically investigated under single collision conditions by using a tandem-mass spectrometer. In the reactions of Cu(n)(±) (n = 3-25) with O(2), oxidation of the cluster is prominently observed with and without releasing Cu atoms at the collision energy of 0.2 eV. The reactivity of Cu(n)(+) is governed to some extent by the electronic shell structure; the relatively small reaction cross sections observed at n = 9 and 21 correspond to the electronic shell closings, and those at odd sizes in n ≤ 16 match with the clusters having no unpaired electron. On the other hand, the reactivity of Cu(n)(-) exhibits no remarkable decrease by the electronic shell closings and the even-numbered electrons. These behaviors may be due to an influence of the electron detachment of the reaction intermediate, Cu(n)O(2)(-). Both the cations and anions show the dominant formation of Cu(n-1)O(2)(±) in n ≤ 16 and Cu(n)O(2)(±) in n ≥ 17 in the experimental time window. By contrast, Cu(n)(-) (n = 3-11) do not react with CO at the collision energy of 0.2 eV, while Cu(n)(+) (n = 3-19) adsorb CO though the cross sections are relatively small. The difference in the reactivity between the charge states can be understood in terms of the frontier orbitals of the Cu cluster and O(2) or CO.  相似文献   

17.
A joint threshold photoelectron photoion coincidence spectrometry (TPEPICO) and collision-induced dissociation (CID) study on the thermochemistry of Co(CO)(2)NOPR(3), R = CH(3) (Me) and C(2)H(5) (Et), complexes is presented. Adiabatic ionization energies of 7.36 +/- 0.04 and 7.24 +/- 0.04 eV, respectively, were extracted from scans of the total ion and threshold electron signals. In the TPEPICO study, the following 0 K onsets were determined for the various fragment ions: CoCONOPMe(3)(+), 8.30 +/- 0.05 eV; CoNOPMe(3)(+), 9.11 +/- 0.05 eV; CoPMe(3)(+) 10.80 +/- 0.05 eV; CoCONOPEt(3)(+), 8.14 +/- 0.05 eV; CoNOPEt(3)(+), 8.92 +/- 0.05 eV; and CoPEt(3)(+), 10.66 +/- 0.05 eV. These onsets were combined with the Co(+)-PR(3) (R = CH(3) and C(2)H(5)) bond dissociation energies of 2.88 +/- 0.11 and 3.51 +/- 0.17 eV, obtained from the TCID experiments, to derive the heats of formation of the neutral and ionic species. Thus, the Co(CO)(2)NOPR(3) (R = CH(3) and C(2)H(5)) 0 K heats of formation were found to be -350 +/- 13 and -376 +/- 18 kJ x mol(-)(1), respectively. These heats of formation were combined with the published heat of formation of Co(CO)(3)NO to determine the substitution enthalpies of the carbonyl to phosphine substitution reactions. Room-temperature values of the heats of formation are also given using the calculated harmonic vibrational frequencies. Analysis of the TCID experimental results provides indirectly the adiabatic ionization energies of the free phosphine ligands, P(CH(3))(3) and P(C(2)H(5))(3), of 7.83 +/- 0.03 and 7.50 +/- 0.03 eV, respectively.  相似文献   

18.
Reactions of protonated water clusters, H(H(2)O)(n) (+) (n=1-4) with D(2)O and their "mirror" reactions, D(D(2)O)(n) (+) (n=1-4) with H(2)O, are studied using guided-ion beam mass spectrometry. Absolute reaction cross sections are determined as a function of collision energy from thermal energy to over 10 eV. At low collision energies, we observe reactions in which H(2)O and D(2)O molecules are interchanged and reactions where H-D exchange has occurred. As the collision energy is increased, the H-D exchange products decrease and the water exchange products become dominant. At high collision energies, processes in which one or more water molecules are lost from the reactant ions become important, with simple collision-induced dissociation processes, i.e., those without H-D exchange, being dominant. Threshold energies of endothermic channels are measured and used to determine binding energies of the proton bound complexes, which are consistent with those determined by thermal equilibrium measurements and previous collision-induced dissociation studies. A kinetic scheme that relies only on the ratio of isomerization and dissociation rate constants successfully accounts for the kinetic energy dependence observed in the branching ratios for H-D and water exchange products in all systems. Rice-Ramsperger-Kassel-Marcus theory and ab initio calculations confirm the feasibility and establish the details of this kinetic model.  相似文献   

19.
An experimental and theoretical study of the photoionization energies (IE's) of Ba(H(2)O)(n) clusters containing up to n = 4 water molecules has been performed. The clusters were generated by a pick-up source combining laser vaporization with pulsed supersonic expansion, and then photoionized by radiation of 272.5-340 nm. The experimentally determined IE(e)'s for n = 1 to 4 are 4.56 ± 0.05, 4.26 ± 0.05, 3.90 ± 0.05 and 3.71 ± 0.05 eV. This cluster size dependence of IE is reproduced within ±0.06 eV employing the mPW1PW91 density-functional and CCSD(T, Full) quantum-chemical methods combined with the 6-311++G(d,p) basis set for the H and O atoms and three different relativistic effective core potentials for Ba atoms. The calculations indicate that the lowest energy hydration structures represent the most relevant contributions to both the vertical and adiabatic ionization energies. Experimental and theoretical evidence correlates with the progressive surface-delocalization of the electron from the hydration cavity around the Ba atom and suggests that the intra-cluster electron transfer is possible even for small aggregates.  相似文献   

20.
The dynamics of charge-transfer-to-solvent states are studied in I- (H2O)(n=3-10) clusters and their deuterated counterparts using time-resolved photoelectron imaging. The photoelectron spectra for clusters with n > or = 5 reveal multiple time scales for dynamics after their electronic excitation. An increase in the vertical detachment energy (VDE) by several hundred millielectronvolts on a time scale of approximately 1 ps is attributed to stabilization of the excess electron, primarily through rearrangement of the solvent molecules, but a contribution to this stabilization from motion of the I atom cannot be ruled out. The VDE drops by approximately 50 meV on a time scale of tens of picoseconds; this is attributed to loss of the neutral iodine atom. Finally, the pump-probe signal decays with a time constant of 60 ps-3 ns, increasing with cluster size. This decay is commensurate with the growth of very slow electrons and is attributed to autodetachment. Smaller clusters (n = 3, 4) display simpler dynamics. Anisotropy parameters are reported for clusters n = 4-9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号