首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 78 毫秒
1.
A synthetic cationic surfactant, 5, 5-ditetradecyl-2-(2-trimethyl-ammonioethyl)-1, 3-dioxane bromide (DTDB), was used toconstruct a supported bilayer lipid membrane (s-BLM) coatedon an underlying glassy carbon electrode (GCE). Electrochem-ical impedance spectroscopy (EIS), small-angle X-ray diffrac-tion (SAXD) and cyclic voltammetry were used to characterizethe s-BLM. Both EIS and SAXD data indicated that the syn-thetic lipid exists as a well-oriented bilayer in the membrane.  相似文献   

2.
A new compound, 2‐(dinitromethylene)‐1,3‐diazacyclopentane (DNDZ), was prepared by the reaction of 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) with 1,2‐diaminoethane in N‐methylpyrrolidone (NMP). Thermal decomposition of DNDZ was studied under non‐isothermal conditions by DSC, TG/DTG methods, and the enthalpy, apparent activation energy and pre‐exponential factor of the exothermic decomposition reaction were obtained as 317.13 kJ·mol?1, 269.7 kJ·mol?1 and 1024.51 s?1, respectively. The critical temperature of thermal explosion was 261.04°C. Specific heat capacity of DNDZ was determined with a micro‐DSC method and a theoretical calculation method, and the molar heat capacity was 205.41 J·mol?1·K?1 at 298.15 K. Adiabatic time‐to‐explosion was calculated to be a certain value between 263–289 s. DNDZ has higher thermal stability than FOX‐7.  相似文献   

3.
Lipidic cubic phases (LCPs) are used in areas ranging from membrane biology to biodevices. Because some membrane proteins are notoriously unstable at room temperature, and available LCPs undergo transformation to lamellar phases at low temperatures, development of stable low‐temperature LCPs for biophysical studies of membrane proteins is called for. Monodihydrosterculin (MDS) is a designer lipid based on monoolein (MO) with a configurationally restricted cyclopropyl ring replacing the olefin. Small‐angle X‐ray scattering (SAXS) analyses revealed a phase diagram for MDS lacking the high‐temperature, highly curved reverse hexagonal phase typical for MO, and extending the cubic phase boundary to lower temperature, thereby establishing the relationship between lipid molecular structure and mesophase behavior. The use of MDS as a new material for LCP‐based membrane protein crystallization at low temperature was demonstrated by crystallizing bacteriorhodopsin at 20 °C as well as 4 °C.  相似文献   

4.
The electrochemical behavior of Na‐salt of 2‐methyl‐3‐(4‐nitrophenyl)acrylate (NPA) and its reduction product was studied by cyclic (CV), differential pulse(DPV) and square wave voltammetry (SWV) using a glassy carbon electrode (GCE). The results revealed that NPA is irreversibly reduced leading to the formation of a reduction product (PNPA). For pH<9.0 the peak potential was linearly dependent on pH. For pH>9.0 the peak potential was pH‐independent and the value of pKb≈9.0 was determined. The adsorbed PNPA exhibited reversible redox reaction. The reduction of PNPA was pH dependent. To ensure that the electrochemical behavior of NPA is due to the reducible moiety, NO2, closely related compounds to NPA were also studied, and a redox mechanism was proposed for NPA.  相似文献   

5.
The use of 1‐butyl‐3‐methylimidazolium hexafluorophosphate ionic liquid [C4mim][PF6] as additive in a Pb(II) plastic membrane electrode increased significantly the selectivity of the sensor. Atomic force microscopy and depth profiling X‐ray photoelectron spectroscopy were applied to investigate the compositional and morphological changes of the surface and bulk of the membrane during the conditioning process of the electrode.  相似文献   

6.
This work describes the characterization of the grafted 2‐benzo[c]cinnoline (2BCC) molecules at a glassy carbon (GC) electrode surface by voltammetry and spectroscopy. Attachment of the molecule to the carbon substrate was achieved by the electrochemical reduction of 2‐benzo[c]cinnoline diazonium salt (2BCC‐DAS). GC electrode modification was carried out in aprotic solution with 2BCC diazonium salt. Dopamine (DA) and ascorbic acid (AA) were used to prove the surface modification to see the blockage of the electron transfer. The presence of 2BCC at the GC electrode surface was characterized by cyclic voltammetry and Raman spectroscopy. Raman spectroscopy was used to monitor molecular bound properties of the adsorbates at the 2BCC‐GC surface and confirm the attachment of 2BCC molecules onto the GC surface. The thickness of the 2BCC film on GC was also investigated by ellipsometric measurement.  相似文献   

7.
A glassy carbon electrode coated the film of 4‐tert‐butyl‐1‐(ethoxycarbonylmethoxy)thiacalix[4]arene is designed for the determination of trace amounts of Hg2+. Compared with bare glassy carbon electrode, the modified electrode can improve the measuring sensitivity of Hg2+. Under the optimum experimental condition, the modified electrode in 0.1 mol L?1 H2SO4 + 0.01 mol L?1 KCl solution shows a linear voltammetric response in the range of 8.0 × 10?9 ~ 3.0 × 10?6 mol L?1 with detection limit 5.0 × 10?9 mol L?1 for Hg2+. The high sensitivity, selectivity, and stability of modified electrode also prove its practical application for a simple, rapid and economical determination of Hg2+ in water samples.  相似文献   

8.
Nuclear magnetic resonance spectra of synthesized azo dyes derived from aniline derivatives in reaction with benzoylacetone and 4‐hydroxycoumarin were studied in both CDCl3 and (CD3)2SO (two drops of D2O were added into solutions of dyes). All dyes showed intramolecular hydrogen bonding. Dyes derived from o‐nitro aniline in the reaction with benzoylacetone, and 4‐hydroxycoumarin showed bifurcated intramolecular hydrogen bonds. The solvent‐substrate proton exchange of dyes derived from benzoylacetone and 4‐hydroxycoumarin was examined in the presence of two drops of D2O. Among ten dye samples, two dyes derived from benzoylacetone did not show deuteration, three dyes showed partial deuteration and five dyes showed full deuteration under similar conditions. For the partially deuterated dyes the β‐isotope effect in 13C splitting was investigated and was used for the determination of the predominant tautomeric form. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Reactions of 1,10‐phenanthroline (phen) and 2‐(3,4‐dichlorophenyl)acetic acid (dcaH) with Mn(CO3) (M = LiI, NaI and MgII; n = 1 and 2) in MeOH yield the mononuclear lithium complex aqua[2‐(3,4‐dichlorophenyl)acetato‐κO](1,10‐phenanthroline‐κ2N,N′)lithium(I), [Li(C8H5Cl2O2)(C12H8N2)(H2O)] or [Li(dca)(phen)(H2O)] ( 1 ), the dinuclear sodium complex di‐μ‐aqua‐bis{[2‐(3,4‐dichlorophenyl)acetato‐κO](1,10‐phenanthroline‐κ2N,N′)sodium(I)}, [Na2(C8H5Cl2O2)2(C12H8N2)2(H2O)2] or [Na2(dca)2(phen)2(H2O)2] ( 2 ), and the one‐dimensional chain magnesium complex catena‐poly[[[diaqua(1,10‐phenanthroline‐κ2N,N′)magnesium]‐μ‐2‐(3,4‐dichlorophenyl)acetato‐κ2O:O′] 2‐(3,4‐dichlorophenyl)acetate monohydrate], {[Mg(C8H5Cl2O2)(C12H8N2)(H2O)2](C8H5Cl2O2)·H2O}n or {[Mg(dca)(phen)(H2O)2](dca)·H2O}n ( 3 ). In these complexes, phen binds via an N,N′‐chelate pocket, while the deprotonated dca? ligands coordinate either in a monodentate (in 1 and 2 ) or bidentate (in 3 ) fashion. The remaining coordination sites around the metal ions are occupied by water molecules in all three complexes. Complex 1 crystallizes in the triclinic space group P with one molecule in the asymmetric unit. The Li+ ion adopts a four‐coordinated distorted seesaw geometry comprising an [N2O2] donor set. Complex 2 crystallizes in the triclinic space group P with half a molecule in the asymmetric unit, in which the Na+ ion adopts a five‐coordinated distorted spherical square‐pyramidal geometry, with an [N2O3] donor set. Complex 3 crystallizes in the orthorhombic space group P212121, with one Mg2+ ion, one phen ligand, two dca? ligands and three water molecules in the asymmetric unit. Both dcaH ligands are deprotonated, however, one dca? anion is not coordinated, whereas the second dca? anion coordinates in a bidentate fashion bridging two Mg2+ ions, resulting in a one‐dimensional chain structure for 3 . The Mg2+ ion adopts a distorted octahedral geometry, with an [N2O4] donor set. Complexes 1 – 3 were evaluated against urease and α‐glucosidase enzymes for their inhibition potential and were found to be inactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号