首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A family of enantiomerically pure oxonium ions, that is O-protonated 1-aryl-1-methoxyethanes, has been generated in the gas phase by the (CH(3))(2)Cl(+) methylation of the corresponding 1-arylethanols. Some information on their reaction dynamics was obtained from a detailed kinetic study of their inversion of configuration and dissociation. The activation parameters of the inversion reaction are found to obey two different isokinetic relationships depending upon the nature and the position of the substituents in the oxonium ions. In contrast, the activation parameters of the dissociation reaction obey a single isokinetic relationship. The inversion and dissociation rate constants do not follow simple linear free-energy relationships. This complicated kinetic picture has been rationalized in terms of different activation dynamics in gaseous CH(3)Cl, which, in turn, determine the reaction dynamics of the oxonium ion. When the predominant activation of the oxonium ion involves resonant energy exchange from the 1015 cm(-1) CH(3) rocking mode of unperturbed CH(3)Cl, the inversion reaction proceeds through the dynamically most favored TS, characterized by the unassisted C(alpha)bond;O bond elongation. When, instead, the activation of the oxonium ions requires the formation of an intimate encounter complex with CH(3)Cl, the inversion reaction takes place via the energetically most favored TS, characterized by multiple coordination of the CH(3)OH moiety with the H(alpha) and H(ortho) atoms of the benzylic residue. The activation dynamics operating in the intimate encounter complex with CH(3)Cl is also responsible for the dissociation of most selected oxonium ions.  相似文献   

2.
The mechanism of enantioselective Michael addition of acetylacetone to a nitroolefin catalyzed by a thiourea-based chiral bifunctional organocatalyst is investigated using density functional theory calculations. A systematic conformational analysis is presented for the catalyst, and it is shown that both substrates coordinate preferentially via bidentate hydrogen bonds. The deprotonation of the enol form of acetylacetone by the amine of the catalyst is found to occur easily, leading to an ion pair characterized by multiple H-bonds involving the thiourea unit as well. Two distinct reaction pathways are explored toward the formation of the Michael product that differ in the mode of electrophile activation. Both reaction channels are shown to be consistent with the notion of noncovalent organocatalysis in that the transition states leading to the Michael adduct are stabilized by extensive H-bonded networks. The comparison of the obtained energetics for the two pathways allows us to propose an alternative mechanistic rationale for asymmetric C-C bond forming reactions catalyzed by bifunctional thiourea derivatives. The origin of enantioselectivity in the investigated reaction is also discussed.  相似文献   

3.
Here we examined the fragmentation, on a quadrupole ion-trap mass spectrometer, of the protonated ions of a group of peptides containing one arginine and two different acidic amino acids, one being aspartic acid (Asp) or glutamic acid (Glu) and the other being cysteine sulfinic acid [C(SO2H)] or cysteine sulfonic acid [C(SO3H)]. Our results showed that, upon collisional activation, the cleavage of the peptide bond C-terminal to C(SO2H) is much more facile than that of the peptide bond C-terminal to Asp, Glu, or C(SO3H). There is no significant difference, however, in susceptibility to cleavage of peptide bonds that are C-terminal to Asp, Glu, and C(SO3H). To understand these experimental observations, we carried out B3LYP/6-31G* density functional theory calculations for a model cleavage reaction of GXG --> b2 + Gly, in which X is Asp, Glu, C(SO2H), or C(SO3H). Our calculation results showed that the cleavage reaction is thermodynamically more favorable when X = C(SO2H) than when X = Asp or C(SO3H). We attributed the less facile cleavage of the amide bond after Glu to that the formation of a six-membered ring b ion for Glu-bearing peptides is kinetically not as favorable as the formation of a five-membered ring b ion for peptides containing the other three acidic amino acids. The results from this study may provide useful tools for peptide sequencing.  相似文献   

4.
The SN2 reaction between glycine and ammonia molecules with magnesium cation Mg2+ as a catalyst has been studied as a model reaction for Mg(2+)-catalyzed peptide bond formation using the ab initio Hartree-Fock molecular orbital method. As in previous studies of the uncatalyzed and amine-catalyzed reactions between glycine and ammonia, two reaction mechanisms have been examined, i.e., a two-step and a concerted reaction. The stationary points of each reaction including intermediate and transition states have been identified and free energies calculated for all geometry-optimized reaction species to determine the thermodynamics and kinetics of each reaction. Substantial decreases in free energies of activation were found for both reaction mechanisms in the Mg(2+)-catalyzed amide bond formation compared with those in the uncatalyzed and amine-catalyzed amide bond formation. The catalytic effect of the Mg2+ cation is to stabilize both the transition states and intermediate, and it is attributed to the neutralization of the developing negative charge on the electrophile and formation of a conformationally flexible nonplanar five-membered chelate ring structure.  相似文献   

5.
An unusual iron transfer and carbon–carbon coupling take place in gas‐phase ionized mixtures containing ferrocene and dichloromethane. Ferrous chloride and the protonated benzenium ion are eventually formed by a thermal and efficient reaction, through stable intermediates that undergo a remarkable reorganization. The mechanism of the concerted iron extrusion, carbon–chlorine bond activation and carbon–carbon bond formation is elucidated by electronic structure calculations that show the crucial role of iron.  相似文献   

6.
An unusual iron transfer and carbon–carbon coupling take place in gas‐phase ionized mixtures containing ferrocene and dichloromethane. Ferrous chloride and the protonated benzenium ion are eventually formed by a thermal and efficient reaction, through stable intermediates that undergo a remarkable reorganization. The mechanism of the concerted iron extrusion, carbon–chlorine bond activation and carbon–carbon bond formation is elucidated by electronic structure calculations that show the crucial role of iron.  相似文献   

7.
Summary The reaction between hydroxopentaaquochromium(III) and octacyanomolybdate(IV) was investigated spectrophotometrically and obeyed a 2:1 reactant stoichiometry with respect to formation of the [Cr(H2O)4OH]2 Mo(CN)8 complex. Kinetic studies reveal that the reaction is first order with respect to hydroxopentaaquochromium(III) in the presence of an excess of octacyanomolybdate(IV). The reaction rate increased with an increase in the ionic strength and temperature, and decreased with an increase in hydrogen ion concentration. A mechanism has been proposed based upon ion-pair formation. The results are best accounted for by the Eigen-Tamm mechanism. Anation of [Cr(H2O)5OH]2+ is discussed in terms of an associative interchange (I a) where bond breaking and bond making are equally important. The activation parameters were calculated using Arrhenius's equation.  相似文献   

8.
The permanganate oxidation of alkenes has been studied both experimentally and computationally. Transition state structures were located for the reaction of permanganate ion with a variety of monosubstituted alkenes at the B3LYP/6-311++G** level. Although the calculated activation energy for the reaction with ethene was reasonable, the calculated effect of substituents, based on the energies of the reactants, was much larger than that experimentally found. This was shown to be due to the formation of an intermediate charge-dipole complex which led to the transition state. Reaction field calculations found the complex to disappear in a high dielectric constant medium, and the range of activation energies for the reaction in solution became quite small. MP2 calculations were carried out in order to have a comparison with the DFT results. MP2-MP4 gave unusual results for calculations on permanganate ion as well as chromate ion and iron tetraoxide. They also gave markedly unreasonable results for the activation energy of the reaction of permanganate with ethane. CCSD/6-311++G** calculations gave satisfactory results for permanganate ion and chromate ion. At this level of theory, the reaction of permanganate with ethene was found to have a very early transition state, when the bond lengths of the reactants just began to change. The reaction was calculated to be very exothermic (-69 kcal/mol), and this was confirmed via calorimetry. The rates of permanganate oxidation of allyl alcohol and acrylonitrile were determined, and they had similar reactivities. The kinetics and the products of the reaction of permanganate with crotonate ion were examined in some detail.  相似文献   

9.
The reaction mechanism of the l-proline-catalyzed α-aminoxylation reaction between aldehyde and nitrosobenzene has been investigated using density functional theory (DFT) calculation. Our calculation results reveal following conclusions [1]. The first step that corresponds to the formation of C–O bond, is the stereocontrolling and rate-determining step [2]. Among four reaction channels, the syn-attack reaction channel is more favorable than that of the anti one, and the TS-ss channel dominates among the four channels for this reaction in the step of C–O bond formation [3]. The intermolecular hydrogen bond between the acidic hydrogen of l-proline and the N atom of the nitrosobenzene in an early stage of the process catalyzes very effectively the C–O bond formation by a large stabilization of the negative charge that is developing at the O atom along the electrophilic attack [4]. The effect of solvent decreases the activation energy, and also, the calculated energy barriers are decrease with the enhancement of dielectric constants for C–O bond formation step. These results are in good agreement with experiment, and allow us to explain the origin of the catalysis and stereoselectivity for l-proline-catalyzed α-aminoxylation of aldehyde reaction. The addition of H2O to substituted imine proline, intermolecular proton-transfer steps, and the l-proline elimination process were also studied in this paper.  相似文献   

10.
The mechanism of 1,2-addition reactions of HF and HCl to Si=Si, Si=C, and C=C bonds has been investigated by ab initio quantum chemical methods. Geometries and relative energies of the stationary points and all the transition states were determined by using the MP2/6-311++G(d,p), B3LYP/6-311++G(d,p), and CBS-Q levels of theory. The investigated reactions can be characterized by two main thermodynamic profiles. The type in which the reagent molecule attacks a carbon atom is moderately exothermic with a high activation barrier. The second type in which a hydrogen halide attacks a silicon is strongly exothermic with a low activation energy. At the early stage of all the reactions a weakly bonded initial complex is found which indicates that the initial step of all the reactions is an electrophilic attack of hydrogen halide. The geometry and charge distribution of the transition state of the reactions indicate two main types of mechanism. If silicon is attacked, the halogen-silicon bond formation precedes the H-Y bond breaking. If, however, carbon is attacked, the first step is always an ionic dissociation of the hydrogen halide and a carbenium ion formation, which is stabilized by the C-Y bond formation in the final step of the reaction. The reaction diagrams and proposed mechanisms explain the experimentally found regioselectivity well.  相似文献   

11.
Asymmetric C(sp)? C(sp2) bond formation to give enantiomerically enriched 1,3‐butadienyl‐2‐carbinols occurred through a homoallenylboration reaction between a 2,3‐dienylboronic ester and aldehydes under the catalysis of a chiral phosphoric acid (CPA). A diverse range of enantiomerically enriched butadiene‐substituted secondary alcohols with aryl, heterocyclic, and aliphatic substituents were synthesized in very high yield with high enantioselectivity. Preliminary density functional theory (DFT) calculations suggest that the reaction proceeds via a cyclic six‐membered chairlike transition state with essential hydrogen‐bond activation in the allene reagent. The catalytic reaction was amenable to the gram‐scale synthesis of a chiral alkyl butadienyl adduct, which was converted into an interesting optically pure compound bearing a benzo‐fused spirocyclic cyclopentenone framework.  相似文献   

12.
Primary fragmentation reactions in benzohydroxamic and benzothiohydroxamic acids have been studied and compared with those in benzamides and benzothioamides. Mass-analysed ion kinetic energy spectra, collisional activation spectra and spectral data from labelled compounds were used to elucidate fragment ion structures and reaction mechanisms. The mass spectra are shown to be dependent on ion source temperature. Losses of O and H2O are proved to be thermal in origin. The formation of an S… HO bond, which is analogous to an intramolecular hydrogen bond in solution chemistry, directs many fragmentation pathways. This seems to be the major factor determining the differences between the mass spectra of benzothiohydroxamic acids and those of the corresponding carbonyl compounds.  相似文献   

13.
Diels‐Alder cycloaddition reaction is useful for generation of covalent derivatives of fullerenes. Diels‐Alder reactions of C70 and dienes usually take place at the carbon‐carbon bond that has a short bond length in C70, while the bonds with long lengths are generally unreactive. In this paper, we investigated the reactivities of Li+@C70 and Li@C70 toward Diels‐Alder reactions with cyclohexadiene by means of density functional theory calculations. We found that the thermodynamic and kinetic reactivities of the fullerene cage are changed significantly after the encapsulation of the lithium ion or atom. The encapsulated lithium ion causes a remarkable decrease of the activation barrier for the cycloaddition reaction, which can be ascribed to the enhanced orbital interaction between cyclohexadiene and the fullerene cage. The unreactive bond with a long length in C70 is activated efficiently after the encapsulation of the lithium atom. According to the activation‐strain model analysis, the improved reactivity of the long bond is associated with the small deformation energy and large interaction energy of the reactants. Unlike conventional Diels‐Alder reactions that proceed through concerted mechanism, the reaction of Li@C70 and cyclohexadiene undergoes an unusual stepwise mechanism because of the open‐shell electronic structure of Li@C70.  相似文献   

14.
Ruthenium-catalyzed oxidative cyanation of tertiary amines with molecular oxygen in the presence of sodium cyanide and acetic acid gives the corresponding alpha-aminonitriles, which are highly useful intermediates for organic synthesis. The reaction is the first demonstration of direct sp(3) C-H bond activation alpha to nitrogen followed by carbon-carbon bond formation under aerobic oxidation conditions. The catalytic oxidation seems to proceed by (i) alpha-C-H activation of tertiary amines by the ruthenium catalyst to give an iminium ion/ruthenium hydride intermediate, (ii) reaction with molecular oxygen to give an iminium ion/ruthenium hydroperoxide, (iii) reaction with HCN to give the alpha-aminonitrile product, H2O2, and Ru species, (iv) generation of oxoruthenium species from the reaction of Ru species with H2O2, and (v) reaction of oxoruthenium species with tertiary amines to give alpha-aminonitriles. On the basis of the last two pathways, a new type of ruthenium-catalyzed oxidative cyanation of tertiary amines with H2O2 to give alpha-aminonitriles was established. The alpha-aminonitriles thus obtained can be readily converted to alpha-amino acids, diamines, and various nitrogen-containing heterocyclic compounds.  相似文献   

15.
Within the ATP-grasp family of enzymes, divalent alkaline earth metals are proposed to chelate terminal ATP phosphates and facilitate the formation of peptide bonds. Density functional theory methods are used to explore the impact of metal ions on peptide bond formation, providing an insight into experimental metal substitution studies. Calculations show that alkaline earth and transition metal cations coordinate with an acylphosphate reactant and aid in the separation of the phosphate leaving group. The critical biochemical reaction is proposed to proceed through the formation of a six-membered transition state in the relatively nonpolar active site of human glutathione synthetase, an ATP-grasp enzyme. While the identity of the metal ion has a moderate impact on the thermodynamics of peptide bond formation, kinetic differences are much sharper. Simulations indicate that several transition metal ions, most notably Cu2+, may be particularly advantageous for catalysis. The detailed mechanistic study serves to elucidate the vital role of coordination chemistry in the formation of peptide bonds.  相似文献   

16.
The potential energy surface of gas-phase hydrolysis of benzenesulfonyl chloride was calculated by PM3 quantum-chemical method. The structural and energy parameters were calculated for all the intermediates and transition states; activation parameters and the thermodynamic functions of the reaction were determined. The axial orientation of the nucleophilic attack is preferred when the reactive center is attacked by the water molecule occurring at the axis of the C-S bond from the sulfonyl group. Gas-phase hydrolysis of benzenesulfonyl chloride is an exothermic process involving formation of an unstable five-coordinate intermediate. The calculated apparent rate constants and activation parameters of the process are compared with the published data on hydrolysis of benzenesulfonyl chloride in water and aqueous-organic solvents.  相似文献   

17.
Semiempirical and density functional theory computational studies were carried out with the target determining the reactivity of five membered heterocycles with heteroatoms in the 1 and 3 positions as dienes for Diels-Alder reactions. The relative reactivity was evaluated in their reaction with acetylene, ethylene, and cyclopropene as dienophiles for cycloaddition. Qualitative criteria such as uniformity of heterocycle bond orders, change of bond orders and frontier molecular orbital energies in transformation of reactants into transition state structures were used to determine the relative reactivity in comparison with furan. These results are compared with the computed activation barriers as well as with experimental findings, where available. If cycloaddition is feasible with these heterocycles, a new synthetic transformation of simple organic compounds to valuable prostaglandin derivatives can be accomplished.  相似文献   

18.
Both theoretical and experimental investigations are reported for the gas-phase hydrolysis of the radical cation of ketene, H(2)CCO(*+). Density functional theory (DFT) with the B3LYP/6-311++G(d,p) method indicates that a second water molecule is required as a catalyst for the addition of water across the C=O bond in H(2)CCO(*+) by eliminating the activation barrier for the conversion of [H(2)CCO.H(2)O](*+) to [H(2)CC(OH)(2)](*+). Theory further indicates that [H(2)CC(OH)(2).H(2)O](*+) may recombine with electrons to produce neutral acetic acid. Experimental results of flow-reactor tandem mass spectrometer experiments in which CH(2)CO(*+) ions were produced either directly from ketene by electron transfer or by the chemical reaction of CH(2)(*+) with CO are consistent with formation of an (C(2),H(4),O(2))(*+) ion in a reaction second-order in H(2)O. Furthermore, comparative multi-CID experiments indicate that this ion is likely to be the enolic CH(2)C(OH)(2)(*+) cation. The results suggest a possible mechanism for the formation of acetic acid from ketene and water on icy surfaces in hot cores and interstellar clouds.  相似文献   

19.
The conversion of adamantane to adamantanols mediated by ferrate (FeO(4)(2)(-)), monoprotonated ferrate (HFeO(4)(-)), and diprotonated ferrate (H(2)FeO(4)) is discussed with the hybrid B3LYP density functional theory (DFT) method. Diprotonated ferrate is the best mediator for the activation of the C-H bonds of adamantane via two reaction pathways, in which 1-adamantanol is formed by the abstraction of a tertiary hydrogen atom (3 degrees ) and 2-adamantanol by the abstraction of a secondary hydrogen atom (2 degrees ). Each reaction pathway is initiated by a C-H bond cleavage via an H-atom abstraction that leads to a radical intermediate, followed by a C-O bond formation via an oxygen rebound step to lead to an adamantanol complex. The activation energies for the C-H cleavage step are 6.9 kcal/mol in the 1-adamantanol pathway and 8.4 kcal/mol in the 2-adamantanol pathway, respectively, at the B3LYP/6-311++G level of theory, whereas those of the second reaction step corresponding to the rebound step are relatively small. Thus, the rate-determining step in the two pathways is the C-H bond dissociation step, which is relevant to the regioselectivity for adamantane hydroxylation. The relative rate constant (3 degrees )/(2 degrees ) for the competing H-atom abstraction reactions is calculated to be 9.30 at 75 degrees C, which is fully consistent with an experimental value of 10.1.  相似文献   

20.
Activation of a strong aryl-Br bond of a halogenated vinylarene by nickel(0) is demonstrated in the presence of aryl-I containing substrates. eta2-Coordination of Ni(PEt3)2 to the C=C moiety of halogenated vinylarenes is kinetically preferable and is followed by an intramolecular aryl-halide bond activation process. This "ring-walking" process is quantitative and proceeds under mild reaction conditions in solution. Mechanistic studies indicate that the metal insertion into the aryl-halide bond is not the rate-determining step. The reaction obeys first-order kinetics in the eta2-coordination complexes with almost identical activation parameters for Br and I derivatives. The ring-walking process is kinetically accessible as shown by density functional theory (DFT) calculations at the PBE0/SDB-cc-pVDZ//PBE0/SDD level of theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号