首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The charge conduction properties of the Au/PVA (Bi-doped)/n-Si Schottky barrier diodes (SBDs) were investigated using current–voltage–temperature (IVT) measurements in dark and under various illumination levels. For this purpose, the main diode parameters such as reverse-saturation current (Io), zero-bias barrier height (ΦBo), ideality factor (n), series resistance (Rs) and shunt resistance (Rsh) of diode were obtained as function of temperature and illumination level. Experimental results show that all of these electrical parameters are strong functions of illumination and temperature. The change in all electrical parameters becomes more important at low temperatures and illumination levels. While the n value decreases with increasing temperature and illumination level, ΦBo value increases. The fill factor (FF = Vm·Im/Voc·Isc) values were obtained as 0.34 at 80 K and 0.40 at 320 K under 50 W and these values are near to a photodiode. Therefore, the fabricated diode can be used as a photodiode in optoelectronic applications. The forward bias IV characteristics of the diode have also been explained by the space charge limited current (SCLC) model.  相似文献   

2.
Adem Tataro&#  lu 《中国物理 B》2013,22(6):68402-068402
In this paper, the electrical parameters of Au/n-Si (MS) and Au/Si3N4/n-Si (MIS) Schottky diodes are obtained from the forward bias current-voltage (I-V) and capacitance-voltage (C-V) measurements at room temperature. Experimental results show that the rectifying ratios of MS and MIS diode at ± 5 V are found to be 1.25×103 and 1.27×104, respectively. The main electrical parameters of MS and MIS diode, such as the zero-bias barrier height (Φ Bo) and ideality factor (n) are calculated to be 0.51 eV (I-V), 0.53 eV (C-V), and 4.43, and 0.65 eV (I-V), 0.70 eV (C-V), and 3.44, respectively. Also, the energy density distribution profile of the interface states (Nss) is obtained from the forward bias I-V. In addition, the values of series resistance (Rs) for the two diodes are calculated from Cheung's method and Ohm's law.  相似文献   

3.
Two types of Schottky Barrier Diodes (SBDs) with and without PVA (Bi2O3-doped) polymeric interfacial layer, were fabricated and measured at room temperature in order to investigate the effects of the PVA (Bi2O3-doped) interfacial layer on the main electrical parameters such as the ideality factor (n), zero-bias barrier height (ΦB0), series resistance (Rs) and interface-state density (Nss). Electrical parameters of these two diodes were calculated from the current-voltage (I-V) characteristics and compared with each other. The values of ΦB0, n and Rs for SBDs without polymeric interfacial layer are 0.71 eV, 1.44 and 4775 Ω, respectively. The values of ΦB0, n and Rs for SBDs with PVA (Bi2O3-doped) polymeric interfacial layer are 0.74 eV, 3.49 and 10,030 Ω, respectively. For two SBDs, the energy density distribution profiles of interface states (Nss) were obtained from forward-bias I-V measurements by taking the bias dependence of Rs of these devices into account. The values of Nss obtained for the SBD with PVA (Bi2O3-doped) polymeric interfacial layer are smaller than those of the SBD without polymeric interfacial layer.  相似文献   

4.
A study on interface states density distribution and characteristic parameters of the In/SiO2/p-Si (MIS) capacitor has been made. The thickness of the SiO2 film obtained from the measurement of the corrected capacitance in the strong accumulation region for MIS Schottky diodes was 220 Å. The diode parameters from the forward bias I-V characteristics such as ideality factor, series resistance and barrier heights were found to be 1.75, 106-112 Ω and 0.592 eV, respectively. The energy distribution of the interface state density Dit was determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height. The interface state density obtained using the I-V characteristics had an exponential growth, with bias towards the top of the valance band, from 9.44×1013 eV−1 cm−2 in 0.329-Ev eV to 1.11×1013 eV−1 cm−2 in 0.527-Ev eV at room temperature. Furthermore, the values of interface state density Dit obtained by the Hill-Coleman method from the C-V characteristics range from 52.9×1013 to 1.11×1013 eV−1 cm−2 at a frequency range of 30kHz-1 MHz. These values of Dit and Rs were responsible for the non-ideal behaviour of I-V and C-V characteristics.  相似文献   

5.
The effects of 60Co (γ-ray) irradiation on the electrical and dielectric properties of Al-TiW-Pd2Si/n-Si Schottky diodes (SDs) have been investigated by using capacitance-voltage (C-V) and conductance-voltage (G/ω-V) measurements at room temperature and 500 KHz. The corrected capacitance and conductance values were obtained by eliminating the effect of series resistance (Rs) on the measured capacitance (Cm) and conductance (Gm) values. The high-low frequency capacitance (CHF-CLF) method given in [12] as Nss = (1/qA) [((1/CLF) − (1/Cox))−1 −  ((1/CHF) − (1/Cox))−1] was successfully adapted to the before-after irradiation capacitance given in this report as Nss = (1/qA) [((1/Cbef) − (1/Cox))−1 − ((1/Cafter) − (1/Cox))−1] for the analyzing the density of interface states. The Nss-V plots give a distinct peak corresponding to localized interface states regions at metal and semiconductor interface. The experimental values of the ac electrical conductivity (σac), the real (M′) and imaginary (M″) parts of the electrical modulus were found to be strong functions of radiation and applied bias voltage, especially in the depletion and accumulation regions. The changes in the dielectric properties in the depletion and accumulation regions stem especially from the restructuring and reordering of the charges at interface states and surface polarization whereas those in the accumulation region are caused by series resistance effect.  相似文献   

6.
A thin poly(ethylmethacrylate) (PEMA) layer is deposited on n-InP as an interlayer for electronic modification of Au/n-InP Schottky structure. The electrical properties of Au/PEMA/n-InP Schottky diode have been investigated by current–voltage (IV) and capacitance–voltage (CV) measurements at different annealing temperatures. Experimental results show that Au/PEMA/n-InP structure exhibit a good rectifying behavior. An effective barrier height as high as 0.83 eV (IV) and 1.09 eV (CV) is achieved for the Au/PEMA/n-InP Schottky structure after annealing at 150 °C compared to the as-deposited and annealed at 100 and 200 °C. Modified Norde's functions and Cheung method are also employed to calculate the barrier height, series resistance and ideality factors. Results show that the barrier height increases upon annealing at 150 °C and then slightly decreases after annealing at 200 °C. The PEMA layer increases the effective barrier height of the structure as this layer creates a physical barrier between the Au metal and the n-InP. Terman's method is used to determine the interface state density and it is found to be 5.141 × 1012 and 4.660 × 1012 cm?2 eV?1 for the as-deposited and 200 °C annealed Au/PEMA/n-InP Schottky diodes. Finally, it is observed that the Schottky diode parameters change with increasing annealing temperature.  相似文献   

7.
A study on the low-temperature CO gas sensors based on Au/SnO2 thick film was reported. Au/SnO2 powders were prepared by a deposition-precipitation method. Thick films were fabricated from Au/SnO2 powders. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analyses were carried out for investigation of morphology and crystalline structure. Au/SnO2 thick film sensors exhibited high sensitivity to CO gas at relatively low operating temperature (83-210 °C). We also reported the effect of the calcination temperature of Au/SnO2 on the CO gas sensing behavior. The optimal calcination temperature of Au/SnO2 was 300 °C.  相似文献   

8.
The current-conduction mechanisms in Au/n-CdTe Schottky solar cells have been investigated by considering the series resistance (Rs) effect in the temperature range 120–380 K. The obtained values of main electrical parameters such as zero-bias barrier height (Φbo), ideality factor (n) and Rs were found strongly function of temperature. While the Φbo increases, the n decreases with the increasing temperature. Such behavior can be explained on the basis of the thermionic emission (TE) theory with the Gaussian distribution (GD) of the barrier height (BH) being related to inhomogeneities at the metal/semiconductor (M/S) interface. The results show that the conduction mechanism in Au/n-CdTe Schottky solar cells can be successfully explained on the basis of the TE mechanism with a GD of the BHs. In addition, the capacitance–voltage (CV) characteristics of Au/n-CdTe solar cells have been investigated at room temperature and 1 MHz.  相似文献   

9.
We have identically prepared Au/p-InP Schottky barrier diodes (SBDs). The diodes were annealed up to 400 °C thermally. The barrier height (BH) for the as-deposited Au/p-InP/Zn-Au SBDs from the current-voltage characteristics have varied from 0.58 to 0.72 eV, and ideality factor n from 1.14 to 1.47. The BH for the annealed SBDs from the current-voltage characteristics have varied from 0.76 to 0.82 eV, and ideality factor n from 1.17 to 1.39. As a result of the thermal annealing, it has been seen that the BH values of the annealed SBDs are larger than those of the as-deposited SBDs. We have determined a lateral homogeneous BH value of 0.72 eV for the as-deposited Au/p-InP SBD from the experimental linear relationship between barrier heights and ideality factors, and a value of 0.85 eV for the annealed Au/p-InP SBD. The increase of 0.13 eV in the BH value by means of 400 °C annealing has been ascribed to the formation of the excess charges that electrically actives on the semiconductor surface.  相似文献   

10.
Electrical devices involve different types of diode in prospective electronics is of great importance. In this study, p-type Si surface was covered with thin film of TiO2 dispersion in H2O to construct p-Si/TiO2/Al Schottky barrier diode (D1) and the other one with TiO2 dispersion doped with zirconium to construct p-Si/TiO2-Zr/Al diode (D2) by drop-casting method in the same conditions. Electrical properties of as-prepared diodes and effect of zirconium as a dopant were investigated. Current–voltage (IV) characteristics of these devices were measured at ambient conditions. Some parameters including ideality factor (n), barrier height (ΦB0), series resistance (Rs) and interface state density (Nss) were calculated from IV behaviours of diodes. Structural comparisons were based on SEM and EDX measurements. Experimental results indicated that electrical parameters of p-Si/TiO2/Al Schottky device were influenced by the zirconium dopant in TiO2.  相似文献   

11.
SnO2 nanowires with controlled diameters were grown by chemical vapor deposition process for which four different diameters ranging from 50 to 140 nm were grown by the controlling thickness of gold-thin-films as catalysts. The influence of the diameter-to-thickness ratio as well as the mechanism of its formation was studied. The relationship between photoluminescence intensities and aspect ratio with considering surface effects of SnO2 nanowires was also investigated. The room temperature luminescence intensity was diminished with decreasing the diameter of nanowires due to the increasing surface/volume ratio. The transition energy and emission intensity show abnormal behavior as temperature decreased from room temperature to 5 K.  相似文献   

12.
Au/SiO2 nanocomposite films were fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering technique and annealing at different temperature for 20 min (mode A) and at 1000 °C for different annealing time (mode B). The nanocomposite films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and photoluminescence (PL). SEM results demonstrate that the size of Au crystallites in mode A first increases and then decreases, on increasing annealing temperature, according to the results of XRD spectra. Analysis of PL spectra in mode B shows that the intensity of the emission peak at 440 nm and 523 nm early increases and late decreases, with increasing annealing time at 1000 °C. The origin of the emission peak at around 440 nm was related to the size and quantity of Au particles and one of the emission peak at around 523 nm was related to the nanostructure of films in agreement with SEM imagines. Experimental results indicated that morphology, microstructure and luminescence of Au/SiO2 nanocomposite films showed close affinity with annealing temperature and annealing time.  相似文献   

13.
The temperature (T) dependence of electrical and dielectric characteristics such as series resistance (Rs), dielectric constant (ε′), dielectric loss (ε″), dielectric loss tangent (tan δ), and real and imaginary part of electrical modulus (M′ and M″) of the Au/SiO2/n-GaAs (MOS) structures have been investigated in the temperature range of 80–350 K at various frequencies by using experimental capacitance (C) and conductance (G/w) measurements. Experimental results show that both C and G/w characteristics were quite sensitive to frequency and temperature at especially high temperatures and low frequencies due to a continuous density distribution of interface states and their relaxation time, and thermal restructuring and reordering of the interface. Series resistance values of this device obtained from Nicollian method decrease with increasing frequency and temperature. The ε′, ε″, tan δ, and M′ and M″ were found a strong function of frequency and temperature. While the values of ε′, ε″, and tan δ decrease, M′ and M″ increase with increasing frequency. Also, while ε′ and ε″ increase, M′ and M″ decrease with increasing temperature. The tan δ and M′ values are almost independent temperature especially at high frequencies (f≥500 kHz).  相似文献   

14.
Au nanoparticles, which were photoreduced by a Nd:YAG laser in HAuCl4 solution containing TiO2 colloid and accompanied by the TiO2 particles, were deposited on the substrate surface. The film consisting of Au/TiO2 particles was characterized by the absorption spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The adhesion between the film and substrate was evaluated by using adhesive tape test. It was found that the presence of TiO2 dramatically enhanced the adhesion strength between the film and the substrate, as well as the deposition rate of film. The mechanism for the deposition of Au/TiO2 film was also discussed.  相似文献   

15.
Daeil Kim 《Optics Communications》2010,283(9):1792-1794
Au-intermediate TiO2/Au/TiO2 (TAT) multilayer films were deposited by RF magnetron sputtering onto glass substrates. Changes in the optical and electrical properties of the films were investigated with respect to the thickness of the Au interlayer.The observed optical and electrical properties were dependent on the thickness of the Au interlayer. The resistivity decreased to 3.3 × 10−4 Ω cm for TiO2 films with a 20 nm-thick Au interlayer and the optical transmittance was also influenced by the Au interlayer. Although optical transmittance deteriorated as Au thickness increased, TiO2 films with a 5 nm-thick Au interlayer showed a relatively high optical transmittance of 80% at a wavelength of 550 nm. In addition, since a TAT film with a 5 nm-thick Au interlayer showed a relatively high work function value, it is an alternative candidate for use as a transparent anode in OLEDs and flat panel displays.  相似文献   

16.
This work presents a study of the adsorption properties of defective nanostructures. The calculations have quantum mechanical detail and are based on a semi-empirical Hamiltonian, which is applied to the evaluation of both the electronic structure and of the conductance. The material considered in this study, i.e. SnO2, has a widespread use as gas sensor and oxygen vacancies are known to act as active catalytic sites for the adsorption of small molecules. In the following calculations crystalline SnO2 nanograins, with a size and shape comparable with the experimental ones, have been considered. The grains lattice, which has the rutile structure of the bulk material, includes oxygen vacancies and the adsorbed system is generated by depositing a gaseous molecule, either CO or O2, above an atom on the grain surface. The calculations show that the presence of the defects enhances the grain cohesion and favors adsorption. The conductance has a functional relationship with the structure and the defective state of the nanograins and its dependence on these quantities parallels the one of the binding energy.  相似文献   

17.
Au/SiO2 nanocomposite films were prepared on Si wafers by cosputtering of SiO2 and gold wires. Au/Si atomic ratios in Au/SiO2 nanocomposite films were varied from 0.53 to 0.92 by controlling the length of gold wire to study the evolution of the crystallization of gold, the size of Au/SiO2 nanocomposite particles, and the optical properties of as-deposited Au/SiO2 nanocomposite films. An X-ray photoelectron spectroscopy reveals that Au exists as a metallic phase in the bulk of SiO2 matrix. Dome-shaped Au/SiO2 nanocomposite particles and both Au (1 1 1) and (2 0 0) planes were observed in a field-emission scanning electron microscopy and X-ray diffraction studies respectively. With an ultraviolet-visible, absorption peaks of Au/SiO2 nanocomposite films were observed at 525 nm.  相似文献   

18.
A simple and efficient way of making highly sensitive SnO2 nanowire-based gas sensors without an individual lithography process was studied. The SnO2 nanowires network was floated upon the Si substrate by separating the Au catalyst layer from the substrate. As the electric current is transported along the networks of the nanowires, not along the surface layer on the substrate, the gas sensitivities could be maximized in this networked and floated structures. The sensitivity was 5-30 when the NO2 concentration was 1-10 ppm. The response time was ca. 20-60 s.  相似文献   

19.
赵翠华  张波萍  尚鹏鹏 《中国物理 B》2009,18(12):5539-5543
Nano metal-particle dispersed glasses are the attractive candidates for nonlinear optical material applications.Au/SiO 2 nano-composite thin films with 3 vol% to 65 vol% Au are prepared by inductively coupled plasma sputtering.Au particles as perfect spheres with diameters between 10 nm and 30 nm are uniformly dispersed in the SiO 2 matrix.Optical absorption peaks due to the surface plasmon resonance of Au particles are observed.The absorption property is enhanced with the increase of Au content,showing a maximum value in the films with 37 vol% Au.The absorption curves of the Au/SiO 2 thin films with 3 vol% to 37 vol% Au accord well with the theoretical optical absorption spectra obtained from Mie resonance theory.Increasing Au content over 37 vol% results in the partial connection of Au particles,whereby the intensity of the absorption peak is weakened and ultimately replaced by the optical absorption of the bulk.The band gap decreases with Au content increasing from 3 vol% to 37 vol % but increases as Au content further increases.  相似文献   

20.
利用多靶磁控溅射技术制备了Au/SiO2纳米颗粒分散氧化物多层复合薄膜.研究了在保持Au单层颗粒膜沉积时间一定时薄膜厚度一定、变化SiO2的沉积时间及SiO2的沉积时间一定而改变薄膜厚度时,多层薄膜在薄膜厚度方向的微观结构对吸收光谱的影响.研究结果表明:具有纳米层状结构的Au/SiO2多层薄膜在560 nm波长附近有明显的表面等离子共振吸收峰,吸收峰的强度随Au颗粒的浓度增加而增强,在Au颗粒浓度相同的情况下,复合薄膜 关键词: 2纳米复合薄膜')" href="#">Au/SiO2纳米复合薄膜 多靶磁控溅射 吸收光谱 有效介质理论  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号