共查询到20条相似文献,搜索用时 15 毫秒
1.
Nguyen Hoa Hong Joe Sakai Ngo Thu Huong Virginie Brizé 《Journal of magnetism and magnetic materials》2006
Laser-ablated Co-doped In2O3 thin films were fabricated under various growth conditions on R-cut Al2O3 and MgO substrates. All Co:In2O3 films are well-crystallized, single phase, and room temperature ferromagnetic. Co atoms were well substituted for In atoms, and their distribution is greatly uniform over the whole thickness of the films. Films grown at 550 °C showed the largest magnetic moment of about 0.5 μB/Co, while films grown at higher temperatures have magnetic moments of one order smaller. The observed ferromagnetism above room temperature in Co:In2O3 thin films has confirmed that doping few percent of magnetic elements such as Co into In2O3 could result in a promising magnetic material. 相似文献
2.
Xing Li Hong-Liang Lu Hong-Ping Ma Jian-Guo Yang Jin-Xin Chen Wei Huang Qixin Guo Ji-Jun Feng David Wei Zhang 《Current Applied Physics》2019,19(2):72-81
Thin Ga2O3 films were grown on Si (100) using trimethylgallium (TMG) and oxygen as the precursors through plasma-enhanced atomic layer deposition. The depositions were made over a temperature range of 80–250?°C with a growth per cycle of around 0.07 nm/cycle. Surface self-saturating growth was obtained with TMG pulse time ≥20?ms?at a temperature of 150?°C. The root mean square surface roughness of the obtained Ga2O3 films increased from 0.1?nm to 0.3?nm with increasing the growth temperature. Moreover, the x-ray photoelectron spectroscopy analysis indicated that the obtained film was Ga-rich with the chemical oxidation states Ga3+ and Ga1+, and no carbon contamination was detected in the films after Ar+ sputtering. The electron density of films measured by x-ray reflectivity varied with the growth temperature, increasing from 4.72 to 5.80?g/cm3. The transmittance of Ga2O3 film deposited on a quartz substrate was obtained through ultraviolet visible (UV–Vis) spectroscopy. An obvious absorption in the deep UV region was demonstrated with a wide band gap of 4.6–4.8?eV. The spectroscopic ellipsometry analysis indicated that the average refractive index of the Ga2O3 film was 1.91?at 632.8?nm and increased with the growth temperature due to the dense structure of the films. Finally, the I-V and C-V characteristics proved that the Ga2O3 films prepared in this work had a low leakage current of 7.2?×?10?11 A/cm2 at 1.0?MV/cm and a high permittivity of 11.9, suitable to be gate dielectric. 相似文献
3.
CuIn3S5 thin films were prepared from powder by thermal evaporation under vacuum (10−6 mbar) onto glass substrates. The glass substrates were heated from 30 to 200 °C. The films were characterized for their optical properties using optical measurement techniques (transmittance and reflectance). We have determined the energy and nature of the optical transitions of films. The optical constants of the deposited films were determined in the spectral range 300-1800 nm from the analysis of transmission and reflection data. The Swanepoel envelope method was employed on the interference fringes of transmittance patterns for the determination of variation of refractive index with wavelength. Wemple-Di Domenico single oscillator model was applied to determine the optical constants such as oscillator energy E0 and dispersion energy Ed of the films deposited at different substrate temperatures. The electric free carrier susceptibility and the ratio of the carrier concentration to the effective mass were estimated according to the model of Spitzer and Fan. 相似文献
4.
K.M. Nissamudeen 《Journal of Physics and Chemistry of Solids》2009,70(5):821-325
Nanostructured europium-doped yttrium oxide thin films with lithium as a co-dopant were prepared using pulsed laser ablation technique. X-ray diffraction studies of the films indicated amorphous nature of the as deposited films and a transformation to crystalline phase with increase of annealing temperature. In this transformation, lithium co-doped films showed early crystallization. Lithium substitution resulted not only in enhancement of photoluminescence at 612 nm, resulting from 5D0-7F2 transition within europium, but also found to reduce the required processing temperature for intense photoemission. The deviation observed in the value of lattice constant of films annealed at different temperatures is found to be sensitive to annealing temperature. In the light of this, the dependence of photoluminescence intensity on the magnitude of lattice imperfection is also discussed. The morphology and transmittance of the films are also found to be sensitive to annealing process and lithium doping. 相似文献
5.
Films of Bi2O3 were grown on glass substrate under atmospheric pressure by means of halide chemical vapour deposition (AP-HCVD) using BiI3 and O2 as the starting materials. In the XRD diffractogram of the film a strong diffraction peak appears at 27.91° assigned to the (111) diffraction of the δ-Bi2O3 with cubic structure. X-ray pole figure suggested that the 〈111〉 direction of the film is perpendicular to the substrate surface, while the 〈110〉 axis directs towards all directions parallel to the substrate surface. It is for the first that δ-Bi2O3 film was prepared on glass substrate. 相似文献
6.
Lance Horng G. Chern M. C. Chen P. C. Kang D. S. Lee 《Journal of magnetism and magnetic materials》2004,270(3):389-396
Epitaxial thin films of Fe3O4 and CoFe2O4 on MgO (0 0 1) substrates were grown by molecular beam epitaxy at low temperature growth process. Magnetization and hysteresis loop of both films were measured to investigate magnetic anisotropic properties at various temperatures. Anomalous magnetic properties are found to be correlated with crystalline, shape, and stress anisotropies. The Fe3O4 film below Verwey structural transition has a change in crystal structure, thus causing many anomalous magnetic properties. Crystalline anisotropy and anomalous magnetic properties are affected substantially by Co ions. The saturation magnetization of Co–ferrite film becomes much lower than that of Fe3O4 film, being very different from the bulks. It indicates that the low temperature growth process could not provide enough energy to have the lowest energy state. 相似文献
7.
E. Carbia-RuelasM.E. Sánchez-Vergara V. García-MontalvoO.G. Morales-Saavedra J.R. Álvarez-Bada 《Applied Surface Science》2011,257(8):3313-3319
In this work, the synthesis of molecular materials formed from A2[TiO(C2O4)2] (A = K, PPh4) and 1,8 dihydroxyanthraquinone is reported. The synthesized materials were characterized by atomic force microscopy (AFM), infrared (IR) and ultraviolet-visible (UV-vis) spectroscopy. IR spectroscopy showed that the molecular-material thin-films, deposited by vacuum thermal evaporation, exhibit the same intra-molecular vibration modes as the starting powders, which suggests that the thermal evaporation process does not alter the initial chemical structures. Electrical transport properties were studied by dc conductivity measurements. The electrical activation energies of the complexes, which were in the range of 0.003-1.16 eV, were calculated from Arrhenius plots. Optical absorption studies in the wavelength range of 190-1090 nm at room temperature showed that the optical band gaps of the thin films were around 1.9-2.3 eV for direct transitions Egd. The cubic NLO effects were substantially enhanced for materials synthesized from K2[TiO(C2O4)2], where χ(3) (−3ω; ω, ω, ω) values in the promising range of 10−12 esu have been evaluated. 相似文献
8.
A novel 6SrO·6BaO·7Al2O3 (S6B6A7) thin film has been deposited onto soda lime float glass via sol-gel dip coating technique. The optical and electrical properties of S6B6A7 films annealed in air and H2 atmosphere have been investigated. The structural and compositional properties of the S6B6A7 thin films have been investigated using Fourier transferred infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The S6B6A7 films prepared using 5 (wt.%) sol and annealed at 450 °C in air and H2 atmosphere exhibit an average transmittance of over ∼91% in wide visible range. The electrical properties of the S6B6A7 films affect film thickness as revealed by sheet resistance measurements. The sheet resistance of the 150 nm S6B6A7 films was 67.85 and 6.06 kilo ohms per square for air and H2 annealed, respectively. 相似文献
9.
A novel 6SrO·6BaO·7Al2O3 (S6B6A7) thin film deposited onto soda lime float glass via sol-gel dip coating technique is reported. The morphological and compositional properties of the S6B6A7 thin films have been investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) revealing that the films were composed of S6B6A7 nanoparticles. The optical properties of the S6B6A7 films are affected by sol concentration, film thickness and annealing temperature as revealed by UV-vis transmittance. The transparency of S6B6A7 films improved on increasing annealing temperature up to 450 °C in air. The S6B6A7 films prepared using 2, 5, and 8 (wt.%) sols and annealed at 450 °C exhibit an average transmittance of over ∼91% in wide visible range. 相似文献
10.
Ternary thin films of cerium titanium zirconium mixed oxide were prepared by the sol-gel process and deposited by a spin coating technique at different spin speeds (1000-4000 rpm). Ceric ammonium nitrate, Ce(NO3)6(NH4)2, titanium butoxide, Ti[O(CH2)3CH3]4, and zirconium propoxide, Zr(OCH2CH2CH3)4, were used as starting materials. Differential calorimetric analysis (DSC) and thermogravimetric analysis (TGA) were carried out on the CeO2-TiO2-ZrO2 gel to study the decomposition and phase transition of the gel. For molecular, structural, elemental, and morphological characterization of the films, Fourier Transform Infrared (FTIR) spectral analysis, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), cross-sectional scanning electron microscopy (SEM), and atomic force microscopy (AFM) were carried out. All the ternary oxide thin films were amorphous. The optical constants (refractive index, extinction coefficient, band gap) and thickness of the films were determined in the 350-1000 nm wavelength range by using an nkd spectrophotometer. The refractive index, extinction coefficient, and thickness of the films were changed by varying the spin speed. The oscillator and dispersion energies were obtained using the Wemple-DiDomenico dispersion relationship. The optical band gap is independent of the spin speed and has a value of about Eg≈2.82±0.04 eV for indirect transition. 相似文献
11.
Preparation of Cu2ZnSnS4 thin films by hybrid sputtering 总被引:2,自引:0,他引:2
Tooru Tanaka Takeshi Nagatomo Mitsuhiro Nishio Akihiro Wakahara Hiroshi Ogawa 《Journal of Physics and Chemistry of Solids》2005,66(11):1978-1981
In order to fabricate Cu2ZnSnS4 thin films, hybrid sputtering system with two sputter sources and two effusion cells is used. The Cu2ZnSnS4 films are fabricated by the sequential deposition of metal elements and annealing in S flux, varying the substrate temperature. The Cu2ZnSnS4 films with stoichiometric composition are obtained at the substrate temperature up to 400 °C, whereas the film composition becomes quite Zn-pool at the substrate temperature above 450 °C. The Cu2ZnSnS4 film shows p-type conductivity, and the optical absorption coefficient and the band gap of the Cu2ZnSnS4 film prepared in this experiment are suitable for fabricating a thin film solar cell. 相似文献
12.
Shigeyuki Nakamura Shizutoshi Ando 《Journal of Physics and Chemistry of Solids》2005,66(11):1944-1946
Metal-organic decomposition (MOD) technique has been developed as a low cost thin film CuInS2 preparation method for solar cell application. XRD and Raman spectra measurement revealed that deposited films contain CuInS2. Stoichiometric films with a bandgap of 1.53 eV and an FWHM of 0.45° were obtained from a solution with Cu/In=1.5. 相似文献
13.
We have prepared the gallium oxide (Ga2O3) thin films on sapphire substrates by the metal organic chemical vapor deposition (MOCVD) technique. We have compared the two films with and without the thermal annealing by using the X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and the photoluminescence (PL) spectra. Postdeposition annealing of amorphous Ga2O3 films was found to increase the degree of crystallization and the surface roughness. The PL emission intensities of bands in the blue–green and the ultraviolet regions increased by the thermal annealing. 相似文献
14.
Aytaç Gültekin Gamze Karanfil Faruk Özel Mahmut Kuş Ridvan Say Savaş Sönmezoğlu 《Journal of Physics and Chemistry of Solids》2014
In the present study, pure and gold nanoparticle (Au NP)-doped titanium dioxide (TiO2) and cadmium oxide (CdO) thin film were prepared by the sol–gel method, and the effect of Au NP doping on the optical, structural and morphological properties of these thin films was investigated. The prepared thin films were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet–visible–near infrared (UV–Vis–NIR) spectra. While the optical band increases from 3.62 to 3.73 for TiO2 thin films, it decreases from 2.20 to 1.55 for CdO thin films with increasing Au doping concentration. Analysis of XRD indicates that the intensities of peaks of the crystalline phase have increased with the increasing Au NP concentrations in all thin films. SEM images demonstrate that the surface morphologies of the samples were affected by the incorporation of Au NPs. Consequently, the most significant results of the present study are that the Au NPs can be used to modify the optical, structural and morphological properties of TiO2 and CdO thin films. 相似文献
15.
Copper indium disulphide (CuInS2) is an efficient absorber material for photovoltaic applications. In this work Zn (0.02 and 0.03 M) doped CuInS2 thin films are (Cu/In = 1.25) deposited onto glass substrates in the temperature range 300–400 °C. XRD patterns depict, Zn-doping facilitates the growth of CuInS2 thin films along (1 1 2) preferred plane and other characteristic planes. Optical studies show, 90% of light transmission occurs in the IR regions; hence Zn-doped CuInS2 can be used as an IR transmitter. The absorption coefficient in the UV–vis region is found to be in the order of 104–105 cm−1. Optical band gap energies increase with increase of temperatures (0.02 M – (1.93–2.05 eV) and 0.03 M – (1.94–2.04 eV)). Well defined, broad Blue and Green band emissions are exhibited. Resistivity study reveals the deposited films exhibit semiconducting nature. Zn species can be used as a donor and acceptor impurity in CuInS2 films to fabricate efficient solar cells and photovoltaic devices. 相似文献
16.
Structure-related infrared optical properties of BaTiO3 thin films grown on Pt/Ti/SiO2/Si substrates
Z.G. Hu G.S. Wang Z.M. Huang J.H. Chu 《Journal of Physics and Chemistry of Solids》2003,64(12):2445-2450
BaTiO3 thin films with different thickness have been grown on Pt/Ti/SiO2/Si substrates by a modified sol-gel method. X-ray diffraction analyses show that the BaTiO3 thin films are polycrystalline. The crystalline quality of the films is improved with increasing thickness. The infrared optical properties of the BaTiO3 thin films have been investigated using an infrared spectroscopic ellipsometry in the wave number range of 800-4000 cm−1 (2.5-12.5 μm). By fitting the measured pseudodielectric functions with a three-phase model (Air/BaTiO3/Pt), and a derived classical dispersion relation for the thin films, the optical constants and thicknesses of the thin films have been simultaneously obtained. The refractive index of the BaTiO3 thin films increases and on the other hand, the extinction coefficient does not change with increasing thickness in the entirely measured wave number range. The dependence of the refractive index on the film thickness has been discussed in detail and was mainly due to both the crystalline quality of the films and packing density. Finally, the absorption coefficient was calculated in the infrared region for applications in the pyroelectric IR detectors. 相似文献
17.
A. Y. Ramos C. Giacomelli E. Favre-Nicolin L. Ranno 《Physica B: Condensed Matter》2002,320(1-4):83-85
We report here on an X-ray absorption study of La0.7Sr0.3MnO3 films epitaxially grown on SrTiO3 substrate. The local organization around Mn in oriented films with 600 Å in thickness was investigated by polarized Extended X-ray Absorption Fine Structure. The angle between electric field vector and film surface was set equal to 5° and 70° to investigate almost independently the contribution of the manganese neighbors situated in and out of the film plane. The first neighboring shell oxygen is found to be the same in both geometries, but small changes in the next neighboring contribution are observed. These changes are associated with variation in the Mn–Mn bond length. A small in-plane elongation (3%) is observed in the constrained films with respect to the unconstrained case. 相似文献
18.
采用射频磁控溅射和N2气氛退火处理制备了多晶Ga2O3薄膜和Cu掺杂Ga2O3薄膜.用X射线衍射仪、紫外-可见分光光度计、荧光光谱仪对Ga2O3薄膜和Cu掺杂Ga2O3薄膜的结构和光学性能进行了表征.结果表明,Cu掺杂后Ga2O3薄膜的结晶质量变差,透过率明显降低,吸收率增加,光学带隙减小.本征Ga2O3薄膜在紫外、蓝光和绿光出现了发光带,Cu掺杂后紫外和蓝光发射增强,且在475 nm 处出现了一个新的发光峰. 相似文献
19.
Alaa A. Akl 《Applied Surface Science》2007,253(17):7094-7099
V2O5 thin films were prepared under various conditions by using reactive RF sputtering technique. The microstructure and electrical properties of the films are have been investigated. X-ray diffraction data revealed the films deposited at low O2/Ar ratio are amorphous. The orthorhombic structure of film improved after post annealing at 873 K. The microstructure parameters (crystallite/domain size and macrostrain) have been evaluated by using a single order Voigt profile method. Using the two-point probe technique, the dark conductivity as a function of the condition parameters such as film thickness, oxygen content and temperature are discussed. It was also found that, the behaviour of ρd versus d was found to fit properly with the Fuchs-Sondheimer relation with the parameters: ρo = 2.14 × 107 Ω cm and ?o = 112 ± 2 nm. At high temperature, the electrical conductivity is dominated by grain boundaries, the values of activation energy and potential barrier height were 0.90 ± 0.02 eV and 0.92 ± 0.02 V, respectively. 相似文献
20.
Nanostructured Gd2O3:Eu3+ and Li+ doped Gd2O3:Eu3+ thin films were prepared by pulsed laser ablation technique. The effects of annealing and Li+ doping on the structural, morphological, optical and luminescent properties are discussed. X-ray diffraction and Micro-Raman investigations indicate a phase transformation from amorphous to nanocrystalline phase and an early crystallization was observed in Li+ doped Gd2O3:Eu3+ thin films on annealing. AFM images of Li+ doped Gd2O3:Eu3+ films annealed at different temperatures especially at 973 K show a spontaneous ordering of the nanocrystals distributed uniformly all over the surface, with a hillocks (or tips) like self-assembly of nanoparticles driven by thermodynamic and kinetic considerations. Enhanced photoemission from locations corresponding to the tips suggest their use in high resolution display devices. An investigation on the photoluminescence of Gd2−xEuxO3 (x=0.10) and Gd2−x−yEuxLiyO3 (x=0.10, y=0.08) thin films annealed at 973 K reveals that the enhancement in luminescence intensity of about 3.04 times on Li+ doping is solely due to the increase in oxygen vacancies and the flux effect of Li+ ions. The observed decrease in the values of asymmetric ratio from the luminescence spectra of Li+ doped Gd2O3:Eu3+ films at high temperature region is discussed in terms of increased EuO bond length as a result of Li+ doping. 相似文献