首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We investigated the role of collagen in the magnetization transfer (MT) effect in contrast to other macromolecules. By means of phantoms made of collagen, chondroitin sulfate (CS) and albumin, MR parameters have been optimized in order to reduce the acquisition time and improve the sensitivity, as well as to minimize the contributions from CS and albumin to the MT induced signal attenuation. The same method was used to study cartilage ex vivo (bovine articular and nasal cartilage plugs) and in vivo (goat knee femoral chondyle). In phantom samples, the MT signal attenuation depended on the collagen concentration while contributions from the other macromolecules were found to be minimal. In average, analysis of MT images revealed a 25%, 35% and 30% signal attenuation in 10% w/v type I collagen gels, cartilage plugs, and cartilage from the weight-bearing areas of the goat knee, respectively. Biochemical data revealed that treatment of cartilage plugs with bacterial collagenase led to collagen depletion and correspondingly to a decrease of the MT response. In contrast, trypsin-induced proteoglycan loss in cartilage plugs did not alter the MT effect. A significant correlation was observed between the collagen content in these plugs and their respective MT ratios and the rate constant k for the exchange process bound versus free water. Finally, data obtained from in vivo MT measurement of the goat knee demonstrated that intra-articular injection of papain might not only cause degradation of proteoglycans but also a change in collagen integrity in a dose-dependent manner. We conclude that in vivo measurement of MT ratios gives quantitative and qualitative information on the collagen status and may be applied for the routine evaluation of normal and abnormal articular cartilage.  相似文献   

3.
Significant progresses have been made in the molecular beam epitaxy (MBE) growth of HgCdTe for high performance infrared photon detectors with the aid of in situ and ex situ characterization techniques. Superlattice interfacial layers compensate in part for the influence of non-ideal CdZnTe substrates and hence improved the material quality as well as yield. They result in photoconductive carrier recombination lifetimes approaching theoretical limits set by the intrinsic radiative and Auger recombination mechanisms for 8–14 μm long-wavelength infrared HgCdTe. Very high composition and thickness uniformities have also been achieved. However, the Urbach tail energy, which is associated with structural disorder, was found to be non-uniform for both large wafer (up to 20 × 20 mm2) and very small area (down to 200 × 200 μm2). After several years of improvements in MBE HgCdTe growth techniques, substrates once again have become a bottleneck to further improvements.  相似文献   

4.
The present study is to investigate human chondrocytes behavior on microcontact printed bone morphogenetic protein-2 (BMP-2) lines on polystyrene (PS) surface. It was found that the cells aligned with BMP lines and expressed type II and VI collagen. The chondrocytes in vitro cultured on BMP lines were elongated, which resulted in altered cell morphology. Taking all these results into consideration, BMP-2 lines enhance cell adhesion, restrict spreading, and increase type II and VI collagen expression. The results represented in this study may be an approach to the problem of engineering reparative cartilage in vitro.  相似文献   

5.
李洪佳  孙光爱  龚建  陈波  王虹  李建  庞蓓蓓  张莹  彭述明 《物理学报》2014,63(23):236101-236101
密排六方结构的Zr呈现弹塑性各向异性,轧制工艺会使材料内部产生晶间应力.准确地评估Zr合金内部的晶间应力分布并明确其微观形变机制,对其服役能力和使用寿命的准确评判具有重要的科学意义和应用价值.利用中子原位衍射技术结合弹塑性自洽(EPSC)模拟分析了Zr-4合金的压缩形变行为,加载方式为沿轧板厚度方向压缩.研究中辅以非原位的背散射电子衍射测试进行织构演化分析及透射电镜(TEM)测试分析缺陷形态.EPSC模拟可以定量地给出不同形变量下的形变机制,并且计算结果可由TEM实验佐证.研究表明:当形变量较小(0.55%)时,柱面{10ˉ10}?11ˉ20?(?a?型)滑移起主导作用;随着塑性形变量的增加,锥面滑移的作用增强,且锥面{10ˉ11}?11ˉ23?(?c+a?型)滑移的作用大于柱面{10ˉ10}?11ˉ20?(?a?型)滑移,少量的锥面{10ˉ11}?11ˉ20?(?a?型)和{10ˉ12}?11ˉ20?(?a?型)滑移也存在.  相似文献   

6.
Ao Li 《中国物理 B》2022,31(4):40706-040706
High-temperature nuclear magnetic resonance (NMR) has proven to be very useful for detecting the temperature-induced structural evolution and dynamics in melts. However, the sensitivity and precision of high-temperature NMR probes are limited. Here we report a sensitive and stable high-temperature NMR probe based on laser-heating, suitable for in situ studies of metallic melts, which can work stably at the temperature of up to 2000 K. In our design, a well-designed optical path and the use of a water-cooled copper radio-frequency (RF) coil significantly optimize the signal-to-noise ratio (S/NR) at high temperatures. Additionally, a precise temperature controlling system with an error of less than ±1 K has been designed. After temperature calibration, the temperature measurement error is controlled within ±2 K. As a performance testing, 27Al NMR spectra are measured in Zr-based metallic glass-forming liquid in situ. Results show that the S/NR reaches 45 within 90 s even when the sample's temperature is up to 1500 K and that the isothermal signal drift is better than 0.001 ppm per hour. This high-temperature NMR probe can be used to clarify some highly debated issues about metallic liquids, such as glass transition and liquid-liquid transition.  相似文献   

7.
Photosystem II (PSII) is a protein-pigment complex situated in the thylakoid membranes of plants and cyanobacteria where it catalyses the conversion of light into chemical energy. This energy is used to extract electrons from water, during which process oxygen is evolved. Owing to its extreme fragility and the large number of polypeptides (>20) it is composed of, the complex has so far proven recalcitrant to high-resolution structural studies. Cryo-electron crystallography of 2-D crystals (a = 15.4 nm, b = 23.1 nm, γ = 97.2°, p1) comprising in situ PSII revealed the first projection structure of the native complex. The unit cell contain one monomeric complex in which three central domains straddle an elongated intramolecular cavity. In conjunction with earlier data, these central domains were assigned to the reaction centre core subunits of PSII consisting of CP43, CP47, the reaction centre heterodimer D1/D2 and cytochrome b-559. The data are discussed in view of the evolution of reaction centres from anoxygenic to oxygenic photosynthesis.  相似文献   

8.
Xiaoting Sun 《中国物理 B》2022,31(7):77701-077701
Since defects such as traps and oxygen vacancies exist in dielectrics, it is difficult to fabricate a high-performance MoS$_{2}$ field-effect transistor (FET) using atomic layer deposition (ALD) Al$_{2}$O$_{3}$ as the gate dielectric layer. In this paper, NH$_{3}$ in situ doping, a process treatment approach during ALD growth of Al$_{2}$O$_{3}$, is used to decrease these defects for better device characteristics. MoS$_{2}$ FET has been well fabricated with this technique and the effect of different NH$_{3}$ in situ doping sequences in the growth cycle has been investigated in detail. Compared with counterparts, those devices with NH$_{3}$ in situ doping demonstrate obvious performance enhancements: $I_{\rm on}/I_{\rm off}$ is improved by one order of magnitude, from $1.33\times 10^{5}$ to $3.56\times 10^{6}$, the threshold voltage shifts from $-0.74 $ V to $-0.12$ V and a small subthreshold swing of 105 mV/dec is achieved. The improved MoS$_{2}$ FET performance is attributed to nitrogen doping by the introduction of NH$_{3}$ during the Al$_{2}$O$_{3}$ ALD growth process, which leads to a reduction in the surface roughness of the dielectric layer and the repair of oxygen vacancies in the Al$_{2}$O$_{3}$ layer. Furthermore, the MoS$_{2}$ FET processed by in situ NH$_{3}$ doping after the Al and O precursor filling cycles demonstrates the best performance; this may be because the final NH$_{3}$ doping after film growth restores more oxygen vacancies to screen more charge scattering in the MoS$_{2}$ channel. The reported method provides a promising way to reduce charge scattering in carrier transport for high-performance MoS$_{2 }$ devices.  相似文献   

9.
A transitory etching regime after SiO2 dissolution and before bulk Si(1 1 1) etching in neutral NH4F solutions was monitored by in situ Brewster-angle reflectometry (BAR). An observed intermediate increase of the BAR reflectance signal is attributed to a fast dissolution of a stressed/strained interlayer beneath the SiO2/Si(1 1 1) interface. Similar effects were observed on thin thermal oxides (18.2 nm), grown on float zone silicon, as well as on ultra-thin native oxides (1.2 nm) on Czochralsky silicon. Native oxide covered samples showed an increased surface roughness in the course of interlayer dissolution while the surface is progressively covered with compounds of fluorinated silicon. The etch rate, determined by atomic force microscopy (AFM) and compared to the etch rate of bulk silicon, is increased by a factor of four. In the limit of extended etching, the known low etch rates for silicon in 40% NH4F are observed. Structural and chemical properties of the interfacial layer were analyzed by synchrotron radiation photoelectron spectroscopy (SRPES) which confirmed the presence of Si3+/4+ valence states throughout the interlayer and by near open-circuit potential (N-OCP) dark current measurements. As a result, oxide etch rates in NH4F in the pH-range 7–8 as well as the silicon interlayer depth can be assessed by in situ BAR.  相似文献   

10.
A systematic investigation of oxidation on a superconductive Fe Te_(0.5)Se_(0.5)thin film,which was grown on Nb-doped SrTiO_3(001) by pulsed laser deposition,has been carried out.The sample was exposed to ambient air for one month for oxidation.Macroscopically,the exposed specimen lost its superconductivity due to oxidation.The specimen was subjected to in situ synchrotron radiation photoelectron spectroscopy(PES) and x-ray absorption spectroscopy(XAS) measurements following cycles of annealing and argon ion etching treatments to unravel what happened in the electronic structure and composition after exposure to air.By the spectroscopic measurements,we found that the as-grown FeTe_(0.5)Se_(0.5)superconductive thin film experienced an element selective substitution reaction.The oxidation preferentially proceeds through pumping out the Te and forming Fe–O bonds by O substitution of Te.In addition,our results certify that in situ vacuum annealing and low-energy argon ion etching methods combined with spectroscopy are suitable for depth element and valence analysis of layered structure superconductor materials.  相似文献   

11.
本文采用原位连续流动条件和间歇条件下的固体核磁共振技术,以及二维13C-13C基于偶极耦合的结合R2(COmbined R2 Driven,CORD)自旋扩散序列的核磁共振实验捕获了H-SSZ-13分子筛催化乙醇脱水过程中多种中间物种,并揭示了各种中间物种的动态演变过程.结果发现H-SSZ-13分子筛催化乙醇脱水过程中,存在两种不同吸附构型的乙醇、活化态的乙醚、乙氧基以及三乙基氧鎓离子,并首次通过原位固体核磁共振技术观测到乙烯的生成.这些结果加深了相关研究者对乙醇脱水反应的认识.  相似文献   

12.
Xia Zhao 《中国物理 B》2022,31(9):96201-096201
The phase transitions among the high-pressure polymorphic forms of CaCO3 (cc-I, cc-II, cc-III, and cc-IIIb) are investigated by dynamic diamond anvil cell (dDAC) and in situ Raman spectroscopy. Experiments are carried out at room temperature and high pressures up to 12.8 GPa with the pressurizing rate varying from 0.006 GPa/s to 0.056 GPa/s. In situ observation shows that with the increase of pressure, calcite transforms from cc-I to cc-II at ~ 1.5 GPa and from cc-II to cc-III at ~ 2.5 GPa, and transitions are independent of the pressurizing rate. Further, as the pressure continues to increase, the cc-IIIb begins to appear and coexists with cc-III within a pressure range that is inversely proportional to the pressurizing rate. At the pressurizing rates of 0.006, 0.012, 0.021, and 0.056 GPa/s, the coexistence pressure ranges of cc-III and cc-IIIb are 2.8 GPa-9.8 GPa, 3.1 GPa-6.9 GPa, 2.7 GPa-6.0 GPa, and 2.8 GPa-4.5 GPa, respectively. The dependence of the coexistence on the pressurizing rate may result from the influence of pressurizing rate on the activation process of transition by reducing the energy barrier. The higher the pressurizing rate, the lower the energy barrier is, and the easier it is to pull the system out of the coexistence state. The results of this in situ study provide new insights into the understanding of the phase transition of calcite.  相似文献   

13.
An in situ mass-spectrometric sampling technique has been developed for lifetime studies of TEA CO2 lasers. Using the new technique, an analysis of the gas components of a TEA CO2 laser during its lifetime has been performed. The results show that the laser output pulse energy was strongly influenced by the oxygen concentration inside the device.  相似文献   

14.
A fluorescent pH indicator in conjunction with confocal microscopy, was used to map intracellular pH in a variety of cells and tissues with high spatial resolution. The new pH-sensitive fluorescent probe SNARF-1 was excited with the 488 nm band of the argon ion laser of a Bio-Rad MRC-500 confocal microscope. Ratio images were created with pixel-by-pixel division, with the intensity of these images representing a function of pH, that is independent of dye concentration, photobleaching or path length. Cell cultures of rat aortic smooth muscle were loaded with 20 μм SNARF-1/AM for 20 min at 37°C. Intracellular pH levels were calibrated in situ by treatment of each cell with nigericin (20 μм) in solutions of known pH. The cytosolic pH of the majority of cells was uniform, however, pH gradients were evident between the cytosol and nuclear regions, indicating the ability of this technique to map intracellular and intraorganelle pH. Rat C6 glioblastoma spheroids were cultured then loaded with SNARF-1/AM at 10°C for 90 min. The pH values were calibrated in vitro, using SNARF-1 acid in buffered solutions of known pH. Ratio images of the bisected spheroids showed a marked gradient in pH from the outer cells compared with central necrotic cells. The degree of involvement of acidification in muscle fatigue was investigated by simultaneously determining force generation and intracellular pH in individual fibres of an intact rat muscle. The investigation was performed during a stimulation protocol which induced significant fatigue in the force response of the muscle. The fatigue protocol induced little change in cytosolic pH in the fibres. We show that the use of SNARF-1, in conjunction with confocal microscopy is a powerful technique for accurately mapping pH within single cells, multicellular tissues and intact organs, as well as for accurately recording dynamic changes in pH.  相似文献   

15.
孙波 《物理学报》2015,64(5):58201-058201
文章以第一类胶原纤维网络为例, 着重分析了癌细胞三维微环境的多尺度结构及力学特征. 对于细胞与细胞外介质结合的蛋白集团、单个细胞以及细胞群体, 分别由单个纤维(或亚纤维)、纤维集束以及纤维网络整体来决定相应的力学环境. 文章同时也讨论了胶原纤维(及其类似材料) 的局限性.  相似文献   

16.
Transient excitation can cause the unstable growth and collapse of bubble nuclei, as well as enhancing the stable cavitation of larger bubbles. These unstable collapses have been photographed at 8000 f.p.s., the resulting pictures agreeing well with predicted numerical solutions. These cavities, unlike those normally studied with high-speed photography, are generated by purely acoustic methods, and so the events are as would occur during in situ acoustic cavitation.  相似文献   

17.
Bis(8-hydroxyquinoline) zinc(II) complex (Znq2), an electroluminescent material used for organic light emitting devices (OLEDS), formed in the interlayer spaces of smectites by solid–solid reactions between Zn(II)-smectites (Zn(II)-synthetic saponite and Zn(II)-montmorillonite) and 8-hydroxyquinoline at ambient condition. The intercalation of 8-hydroxyquinoline molecules into Zn(II)-smectites and the in situ complex formation of Znq2 chelate in smectites were confirmed by powder XRD, FT-IR, TG–DTA, UV–vis absorption and photoluminescence spectroscopies, and elemental (CHN) analysis. The photoluminescence intensity of the Znq2 complex in synthetic saponite was higher than that of the complex in montmorillonite, suggesting the very low content of quenching impurities in synthetic saponite. The difference in the luminescence bands were thought to be caused by the different molecular structure and molecular packing of the complex formed in the interlayer spaces.  相似文献   

18.
NMR relaxation time distributions, obtained with laboratory and portable devices, are utilized to characterize the pore-size distributions of building materials coming from the Roman remains of the Greek-Roman Theatre of Taormina. To validate the interpretation of relaxation data in terms of pore-size distribution, comparison of results from standard and in situ NMR experiments with results of the mercury intrusion porosimetry (MIP) has been made. Although the pore-size distributions can be obtained by NMR in terms of either longitudinal (T1) or transverse (T2) relaxation times distributions, the shorter duration of the T2 measurement makes it, in principle, preferable, although the determination of T2 distributions is not necessarily an easy alternative to finding T1 distributions. Among other things, the T1 distribution is almost independent of the inhomogeneity of the magnetic field, while the T2 distribution is strongly influenced by it. This paper was aimed at answering two questions: what are the validity limits to interpret NMR data in terms of pore-size distributions and whether the portable device can successfully be applied as a non-destructive and non-invasive tool for in situ NMR analysis of building materials, particularly those of Cultural Heritage interest.  相似文献   

19.
Articular cartilage is a connective tissue that is located at the ends of long bones. Type II collagen, proteoglycans, water, and chondrocytes are the main constituents of articular cartilage. Osteoarthritis, the most common joint disease in the world, causes degenerative changes in articular cartilage tissue. Fourier transform infrared, Raman, and near infrared spectroscopic techniques offer versatile tools to assess biochemical composition and quality of articular cartilage. These vibrational spectroscopic techniques can be used to broaden our understanding about the compositional changes during osteoarthritis, and they also hold promise in disease diagnostics. In this article, the current literature of articular cartilage spectroscopic studies is reviewed.  相似文献   

20.
We demonstrate the use of a grazing angle objective attachment to carry out in situ far infrared micro-spectroelectrochemistry at a copper electrode on a nano-scale. A thin-layer spectrochemical cell made out of Teflon was used, fitted with a 20-μm thick Mylar window; the working electrode was 500 μm in diameter. Measurements were carried out in 0.1 M NaOH solution as a function of applied potential between –1.4 and 0 V vs a Hg/Hg2SO4 reference electrode. Spectra were obtained with excellent signal to noise ratio for the surface oxide film, formed on copper electrochemically with less than 1 nL of active solution volume. The surface film at 0 V was about 130 nm thick and consisted mainly of CuO, with possibly some Cu(OH)2 also present. This interpretation is consistent with previous works and thermodynamic calculations. The technique should be useful in other investigations and the further development of electrochemical surface science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号