首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
山梨醇是重要的生物基平台化合物,其选择加氢裂解制备乙二醇和1,2-丙二醇等低碳二元醇,是一个具有重要科学意义和应用前景的催化过程.山梨醇氢解反应涉及C-C键和C-O键等化学键的裂解,裂解选择性尤为关键.通常情况下,添加NaOH,KOH,Ca(OH)2,CaO和Ba(OH)2等碱性物质可增加糖醇转化率和二元醇选择性,但也会生成大量乳酸等副产物.研究乳酸的生成途径,探索抑制乳酸生成的方法,对于提高山梨醇加氢裂解制备低碳二元醇的选择性具有重要意义.本文以Ni/C催化剂上山梨醇加氢裂解反应为模型反应,研究了碱性化合物添加剂类型及其用量对乳酸生成的影响.根据加氢裂解机理分析可知,糖醇氢解主要涉及以下关键步骤:在碱的存在下,多元醇在金属催化剂上发生脱氢反应生成相应的羰基中间体;然后,羰基中间体在碱性介质中通过逆羟醛缩合反应,发生C-C键断裂.因此,在糖醇氢解反应和C-C键断裂中,添加碱性化合物将会不可避免地生成乳酸.结果表明,以NaOH和Ca(OH)2为添加剂时,山梨醇加氢裂解生成乳酸的选择性分别为15.1%和8.9%.而以La(OH)3为添加剂时,生成乳酸的选择性仅为0.1%.以Ca(OH)2和La(OH)3为添加剂时反应具有高活性,山梨醇转化率均可达到99%以上.分别以Ca(OH)2和La(OH)3为添加剂,研究了碱性添加剂用量对山梨醇氢解反应的影响.结果表明,以Ca(OH)2为添加剂时,山梨醇转化率和乳酸选择性均随着Ca(OH)2用量增加而增加;当OH-投料量为11.06 mmol时,乳酸选择性可达11.7%.而以La(OH)3为添加剂时,即使La(OH)3用量仅为0.08 mmol时,山梨醇转化率也可高达99%;继续增加La(OH)3用量,对乳酸的选择性影响不大;当OH-投料量为11.06 mmol时,乳酸选择性也只有0.3%.对山梨醇加氢裂解反应分析可知,与Ca(OH)2相比,La(OH)3添加剂可使C2和C4产物的总选择性从20.0%增加到24.5%.上述结果表明La(OH)3可高效促进山梨醇加氢转化.为了探索Ca(OH)2或La(OH)3为添加剂时山梨醇加氢裂解产物分布不同的本质原因,以Ni/C催化剂催化的丙酮醛加氢转化为探针反应,探讨了乳酸形成的可能路径.结果表明,丙酮醛可能是山梨醇氢解反应的关键中间体之一.在仅以Ni/C催化加氢时,丙酮醛容易被转化为1,2-丙二醇;当只存在碱性添加剂时,丙酮醛可发生重排并被转化为乳酸主产物,这可能是乳酸生成的主要原因.进一步研究表明,以Ca(OH)2为添加剂时,乳酸选择性是以La(OH)3为添加剂时的1.9倍.在Ni/C催化剂和碱性添加剂共存时,由于碱性添加剂的区别,则会得到不同选择性的1,2-丙二醇和乳酸.结果表明,通过丙酮醛催化加氢可得到1,2-丙二醇,也可以通过重排反应生成乳酸;这两类反应是竞争性的.在山梨醇氢解反应中,以Ca(OH)2为添加剂时,加氢反应和重排反应均可发生.而以La(OH)3为添加剂时,丙酮醛加氢反应占主导,仅生成微量乳酸.该研究对提高山梨醇催化加氢裂解选择性具有参考意义.  相似文献   

2.
山梨醇是重要的生物基平台化合物,其选择加氢裂解制备乙二醇和1,2-丙二醇等低碳二元醇,是一个具有重要科学意义和应用前景的催化过程.山梨醇氢解反应涉及C-C键和C-O键等化学键的裂解,裂解选择性尤为关键.通常情况下,添加NaOH,KOH,Ca(OH)_2,CaO和Ba(OH)_2等碱性物质可增加糖醇转化率和二元醇选择性,但也会生成大量乳酸等副产物.研究乳酸的生成途径,探索抑制乳酸生成的方法,对于提高山梨醇加氢裂解制备低碳二元醇的选择性具有重要意义.本文以Ni/C催化剂上山梨醇加氢裂解反应为模型反应,研究了碱性化合物添加剂类型及其用量对乳酸生成的影响.根据加氢裂解机理分析可知,糖醇氢解主要涉及以下关键步骤:在碱的存在下,多元醇在金属催化剂上发生脱氢反应生成相应的羰基中间体;然后,羰基中间体在碱性介质中通过逆羟醛缩合反应,发生C-C键断裂.因此,在糖醇氢解反应和C-C键断裂中,添加碱性化合物将会不可避免地生成乳酸.结果表明,以NaOH和Ca(OH)_2为添加剂时,山梨醇加氢裂解生成乳酸的选择性分别为15.1%和8.9%.而以La(OH)_3为添加剂时,生成乳酸的选择性仅为0.1%.以Ca(OH)_2和La(OH)_3为添加剂时反应具有高活性,山梨醇转化率均可达到99%以上.分别以Ca(OH)_2和La(OH)_3为添加剂,研究了碱性添加剂用量对山梨醇氢解反应的影响.结果表明,以Ca(OH)_2为添加剂时,山梨醇转化率和乳酸选择性均随着Ca(OH)_2用量增加而增加;当OH~-投料量为11.06 mmol时,乳酸选择性可达11.7%.而以La(OH)_3为添加剂时,即使La(OH)_3用量仅为0.08 mmol时,山梨醇转化率也可高达99%;继续增加La(OH)_3用量,对乳酸的选择性影响不大;当OH~-投料量为11.06 mmol时,乳酸选择性也只有0.3%.对山梨醇加氢裂解反应分析可知,与Ca(OH)_2相比,La(OH)_3添加剂可使C2和C4产物的总选择性从20.0%增加到24.5%.上述结果表明La(OH)_3可高效促进山梨醇加氢转化.为了探索Ca(OH)_2或La(OH)_3为添加剂时山梨醇加氢裂解产物分布不同的本质原因,以Ni/C催化剂催化的丙酮醛加氢转化为探针反应,探讨了乳酸形成的可能路径.结果表明,丙酮醛可能是山梨醇氢解反应的关键中间体之一.在仅以Ni/C催化加氢时,丙酮醛容易被转化为1,2-丙二醇;当只存在碱性添加剂时,丙酮醛可发生重排并被转化为乳酸主产物,这可能是乳酸生成的主要原因.进一步研究表明,以Ca(OH)_2为添加剂时,乳酸选择性是以La(OH)_3为添加剂时的1.9倍.在Ni/C催化剂和碱性添加剂共存时,由于碱性添加剂的区别,则会得到不同选择性的1,2-丙二醇和乳酸.结果表明,通过丙酮醛催化加氢可得到1,2-丙二醇,也可以通过重排反应生成乳酸;这两类反应是竞争性的.在山梨醇氢解反应中,以Ca(OH)_2为添加剂时,加氢反应和重排反应均可发生,而以La(OH)_3为添加剂时,丙酮醛加氢反应占主导,仅生成微量乳酸.该研究对提高山梨醇催化加氢裂解选择性具有参考意义.  相似文献   

3.
以不同官能化碳纳米管(原始MCN、氨基化AMCN和石墨化GMCN等)作为载体,通过浸渍法制备了Ru/CNTs催化剂,并应用于山梨醇氢解制1,2-丙二醇和乙二醇反应中。利用XRD、HRTEM、XPS和ICP-AES等方法对催化剂进行了表征,考察了官能团性质、碱助剂等因素对山梨醇氢解性能的影响。结果表明,与Ru/MCN或Ru/GMCN相比较,Ru/AMCN催化剂对山梨醇氢解有更高的活性,在205℃、5.0 MPa氢压条件下,以Ca(OH)2为添加剂,山梨醇的转化率可达99.5%,1,2-丙二醇(1,2-PD)和乙二醇(EG)的总产率为47.7%。催化剂重复利用五次,催化活性无明显下降。  相似文献   

4.
采用水热法合成了纳米棒状La(OH)3载体,通过湿式浸渍方法制备了10%Ni/La(Ⅲ)负载型催化剂,考察了500~800℃不同焙烧温度对于催化剂氢解山梨醇制备低碳二元醇的影响,结合XRD、SEM/EDS、BET、H2-TPR-MS、CO/CO2-TPD-MS、TG和ICP-AES等表征手段对Ni/La(Ⅲ)催化剂的构效关系进行了分析。结果表明,Ni/La(Ⅲ)催化剂表现出高的氢解反应活性,在较低的焙烧温度下(500℃)催化剂主要以NiO/La2O2CO3结构形式存在。随着焙烧温度的升高,NiO/La2O2CO3逐渐向La2NiO4-La2O3进行转变。碱性是影响不同催化剂活性的决定因素,高的焙烧温度促进了催化剂中强碱性位的生成,显著提高了氢解反应活性,但对液体产物的选择性无明显影响,在220℃、4MPa H2、1.5h的条件下,山梨醇完全转化,低碳二元醇的产率可达到53%。低的焙烧温度则增加了催化剂的水热稳定性。催化剂的失活主要归结于活性金属粒子在水相反应中从载体表面脱落而发生团聚,降低氢解反应活性。  相似文献   

5.
研究了在室温离子液体以及室温离子液体/有机溶剂复合介质体系中, Rh(PPh3)3Cl, Ru(PPh3)3Cl2等催化烯烃与三乙氧基硅烷的硅氢加成反应. 实验结果表明, 在乙二醇二甲醚/离子液体1-丁基-3-甲基咪唑六氟磷酸盐(BMImBF6) (V/V=1/4)介质中, 于90 ℃下, 己烯与三乙氧基硅烷反应的转化率为100%, β加成物的选择性可达89.0%. 而用Rh(PPh3)3Cl作为反应的催化剂, 在纯离子液体BMImPF6中, 就可以高效催化烯烃与三乙氧基氢硅烷的加成反应. 过渡金属Rh(PPh3)3Cl, Ru(PPh3)3Cl2催化剂/离子液体BMImPF6催化体系, 不仅解决了产物与催化剂分离困难这一难题, 同时, 离子液体BMImPF6的存在提高了过渡金属Rh(PPh3)3Cl, Ru(PPh3)3Cl2催化硅氢加成反应的活性, 特别是β加成物的选择性. 反应结束后, 催化剂/离子液体与产物易于分离, 并且可以重复使用.  相似文献   

6.
甘油、丙二醇和乙二醇是非常重要的化工原料和合成聚酯类、聚醚类树脂的单体,也可作为功能化合物直接应用于化妆品、食品及制冷等领域.随着生物炼制行业的发展,其作为生物基平台化合物在未来可以获得更为广泛的应用.从富含氧原子的纤维素出发制备甘油和二元醇,符合绿色化学化工的原子经济性、工艺经济性和生产过程清洁等原则,也是生物质资源化利用的重要途径.因此,近年来以纤维素及其衍生物糖和糖醇为原料,通过氢解反应制备甘油和二元醇的研究在国外已广泛开展.在目前已报道的氢解糖和糖醇研究中,几乎均采用包含金属催化剂和液体碱助剂的耦合催化体系,所用液体碱为NaOH, KOH和Ca(OH)2等,使用量很大.这些碱性助剂可以提高金属催化剂对糖醇加氢和氢解反应的催化活性,促进底物转化,但同时也不可避免地加剧了二醇产物进一步氢解和自身缩合反应,使产物选择性降低.在产物分离和提纯过程中,过高的碱浓度也会诱导甘油和二醇产品自身缩合,使分离困难,提高了分离成本.反应液的强碱性还增加了生产过程的设备成本.本文以固体碱MgO为载体,分别负载Ni, Co和Cu等金属制备出Ni-MgO, Co-MgO和Cu-MgO等双功能催化剂,应用于糖醇氢解反应,从而减少或避免使用液体碱添加剂.木质纤维素降解得到的单糖中含量最大的是六碳糖,本文以六碳糖加氢衍生物山梨醇为模型底物,考察了所制MgO负载金属双功能催化剂催化糖醇氢解制甘油和二元醇的活性和选择性,研究了反应条件对山梨醇氢解生成二醇和甘油的影响. 山梨醇氢解反应在不锈钢反应釜中进行.采用气相色谱-质谱联用对氢解产物进行定性分析,采用气相色谱和离子色谱分别对反应中低沸点和高沸点产物进行定量分析.结果表明,在Ni-MgO, Co-MgO和Cu-MgO (其中活性金属和载体MgO的比例为1:3)三种催化剂上山梨醇均能高效转化为乙二醇、1,2-丙二醇和甘油;无论是否添加Ca(OH)2,山梨醇氢解活性顺序均为Ni-MgO>Co-MgO>Cu-MgO.三种催化剂上产物选择性有较大差异, Ni-MgO和Co-MgO对乙二醇和1,2-丙二醇具有较好的选择性,其中1,2-丙二醇与乙二醇比例约为2,而Cu-MgO催化剂对1,2-丙二醇选择性较高,1,2-丙二醇与乙二醇比例约为7.同时,考察了反应温度、压力和反应时间对三种催化剂上山梨醇转化活性和产物选择性的影响.随着温度升高,所有催化剂活性均显著增加,其中Ni-MgO和Cu-MgO催化山梨醇氢解对反应条件较为敏感,而Cu-MgO催化剂对反应条件不敏感.在Ni-MgO催化剂上,可以在较低的反应温度下获得较高的产物选择性.  相似文献   

7.
甘油、丙二醇和乙二醇是非常重要的化工原料和合成聚酯类、聚醚类树脂的单体,也可作为功能化合物直接应用于化妆品、食品及制冷等领域.随着生物炼制行业的发展,其作为生物基平台化合物在未来可以获得更为广泛的应用.从富含氧原子的纤维素出发制备甘油和二元醇,符合绿色化学化工的原子经济性、工艺经济性和生产过程清洁等原则,也是生物质资源化利用的重要途径.因此,近年来以纤维素及其衍生物糖和糖醇为原料,通过氢解反应制备甘油和二元醇的研究在国外已广泛开展.在目前已报道的氢解糖和糖醇研究中,几乎均采用包含金属催化剂和液体碱助剂的耦合催化体系,所用液体碱为NaO H,KOH和Ca(OH)2等,使用量很大.这些碱性助剂可以提高金属催化剂对糖醇加氢和氢解反应的催化活性,促进底物转化,但同时也不可避免地加剧了二醇产物进一步氢解和自身缩合反应,使产物选择性降低.在产物分离和提纯过程中,过高的碱浓度也会诱导甘油和二醇产品自身缩合,使分离困难,提高了分离成本.反应液的强碱性还增加了生产过程的设备成本.本文以固体碱MgO为载体,分别负载Ni,Co和Cu等金属制备出Ni-MgO,Co-MgO和Cu-MgO等双功能催化剂,应用于糖醇氢解反应,从而减少或避免使用液体碱添加剂.木质纤维素降解得到的单糖中含量最大的是六碳糖,本文以六碳糖加氢衍生物山梨醇为模型底物,考察了所制MgO负载金属双功能催化剂催化糖醇氢解制甘油和二元醇的活性和选择性,研究了反应条件对山梨醇氢解生成二醇和甘油的影响.山梨醇氢解反应在不锈钢反应釜中进行.采用气相色谱-质谱联用对氢解产物进行定性分析,采用气相色谱和离子色谱分别对反应中低沸点和高沸点产物进行定量分析.结果表明,在Ni-MgO,Co-MgO和Cu-MgO(其中活性金属和载体MgO的比例为1:3)三种催化剂上山梨醇均能高效转化为乙二醇、1,2-丙二醇和甘油;无论是否添加Ca(OH)2,山梨醇氢解活性顺序均为Ni-MgOCo-MgOCu-MgO.三种催化剂上产物选择性有较大差异,Ni-MgO和Co-MgO对乙二醇和1,2-丙二醇具有较好的选择性,其中1,2-丙二醇与乙二醇比例约为2,而Cu-MgO催化剂对1,2-丙二醇选择性较高,1,2-丙二醇与乙二醇比例约为7.同时,考察了反应温度、压力和反应时间对三种催化剂上山梨醇转化活性和产物选择性的影响.随着温度升高,所有催化剂活性均显著增加,其中Ni-MgO和Cu-MgO催化山梨醇氢解对反应条件较为敏感,而Cu-MgO催化剂对反应条件不敏感.在Ni-MgO催化剂上,可以在较低的反应温度下获得较高的产物选择性.  相似文献   

8.
报道了一种利用价廉易得的邻苯二胺衍生物与α-酮酸酯经环化/钌催化的亚胺和酰胺氢化串联反应一锅法制备1,2,3,4-四氢喹喔啉的方法. 该方法使用原位生成的Ru(acac)3/Triphos配合物和HBF4共催化剂组成的催化体系, 高效制备了一系列2-取代的1,2,3,4-四氢喹喔啉, 官能团耐受性良好. 在较低的氢气压力和不使用助催化剂的条件下, 反应可停留在只生成3,4-二氢喹喔啉酮产物阶段. 反应机理研究表明, 钌催化剂仅用于还原亚胺和酰胺部分, 而布朗斯台德酸助催化剂的选择对于酰胺部分去氧氢化至关重要. 研究表明, 布朗斯台德酸助催化剂通过活化酰胺部分参与催化过程.  相似文献   

9.
王帅  李洋  刘海超 《化学学报》2012,70(18):1897-1903
我们通过乙醇溶液浸渍法合成出了具有高分散度金属Cu 的Cu/MgO-Al2O3 (Mg/Al 原子比=1/1, 3/1, 4/1)、Cu/MgO 和Cu/Al2O3 等催化剂. 在200℃, 6.0 MPa H2 和二氧六环溶剂中, 这些催化剂高选择性地将甘油氢解为1,2-丙二醇(选择性>90%), 而单位表面Cu 原子的甘油转化速率则随催化剂表面碱中心与Cu 原子比例的提高而增大. N2O 化学吸附-H2 程序升温还原实验表明Cu 粒子的本征氢解能力不随其负载量以及载体中的Mg/Al 原子比发生明显改变, 加之碱性MgO-Al2O3 载体本身不催化甘油的转化, 我们推测在甘油氢解反应中金属Cu 粒子与载体界面处的碱中心辅助Cu 粒子活化甘油分子的α 位C-H键, 从而加速甘油脱氢为甘油醛步骤以及甘油氢解反应的进行. CO2程序升温脱附实验以及对甘油氢解反应中Cu/MgO-Al2O3 催化剂稳定性的考察结果暗示在甘油氢解反应中起主要作用的碱中心是载体表面上与Mg2+键连的羟基基团(即B 碱OH-). 这些对甘油氢解反应中金属中心与碱性中心协同作用的认识对进一步理性设计高效的甘油或其它多元醇分子氢解催化剂具有重要指导意义.  相似文献   

10.
钯-高分子载体催化剂对糠醛加氢液相反应的研究   总被引:7,自引:0,他引:7  
以弱碱性苯乙烯系阴离子交换树脂[D392,-NH2,D382,-NHCH3,D301R,-NH(CH3)2],强碱性苯乙烯系阴离子交换树脂[201×7DVB,-NH+(CH3)3]和弱碱性环氧系阴离子交换树脂(701,-NH2)为载体制备了3种钯-高分子载体催化剂.考察了反应条件、高分子载体的种类、钯含量和催化剂用量对糠醛催化加氢生成四氢糠醇反应及催化性能的影响.在体积分数为50%的乙醇-水溶液和水中对糠醛常压液相加氢反应,钯-高分子载体(阴离子交换树脂D392,-NH2,D382,-NHCH3)催化剂均可使糠醛的加氢反应转化率达100%,生成四氢糠醇的选择性达98%以上,而用金属钯为催化剂的转化率达70%以上,选择性达97%以上.同时用XPS分析了高分子载体催化剂的结构与催化加氢反应性能的关系.  相似文献   

11.
使用浸渍法结合不同预处理方法制备了一系列的Ru/SBA-15催化剂,并将其应用于丙三醇氢解反应中.使用N2吸附-脱附、X射线衍射、CO化学吸附以及透射电子显微镜等方法对所制备Ru/SBA-15进行了表征.结果表明,催化剂前驱体经过空气焙烧后再经H2还原的Ru/SBA-15催化剂上Ru的分散度较低,而直接使用H2处理较高.同时,随着H2还原温度提高,Ru分散度逐渐降低.保持反应活性接近时,随着Ru分散度的降低,TOF增加.表明Ru/SBA-15催化剂上丙三醇氢解是结构敏感反应.  相似文献   

12.
通过化学处理法在泡沫铜基底表面生成Cu(OH)2纳米线,大大增加了基底材料的表面积和导电性.采用水热法在Cu(OH)2纳米线表面制备片状Ni-CH/Cu(OH)2前驱体,对Ni-CH/Cu(OH)2前驱体进行低温磷化得到多级结构Ni2P/Cu(OH)2催化剂.通过扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)和X射线衍射仪(XRD)对催化剂的物质结构和表面形貌进行了表征.采用线性伏安法、恒电位等技术对催化剂的电化学性能进行测试.在1.0 mol·L-1 KOH碱性溶液中,当电流密度为10 mA·cm-2时,Ni2P/Cu(OH)2的析氢反应(HER)和析氧反应(OER)过电位分别为133和333 mV,且均具有较好的稳定性.将这种多级结构Ni2P/Cu(OH)2催化剂分别用作阳极和阴极进行全解水电解,电流密度达到10 ...  相似文献   

13.
贾玉庆  刘海超 《催化学报》2015,(9):1552-1559
山梨醇和木糖醇等多元醇是可再生生物质转化合成液体燃料和化学品的重要平台分子,其中,可通过选择氢解反应一步制备乙二醇和丙二醇等重要化工原料,有望代替从乙烯和丙烯制备二元醇的传统石油化工工艺.目前文献中多元醇氢解反应主要使用Ru基和Ni基催化剂等,但是不可避免地生成C?C键非选择性断裂的副产物甲烷等.与之相比,非贵金属Cu基催化剂往往具有较优异的选择性,但其活性较低和水热稳定性较差.因此,到目前为止研制具有高活性和选择性、以及良好水热稳定性的Cu基催化剂用于生物质基多元醇氢解反应仍然存在挑战.在本文中,我们采用贵金属修饰的方法提高Cu基催化剂在山梨醇选择氢解反应中的活性和水热稳定性.通过分步浸渍法合成了1%Pd-3%Cu/ZrO2、1%Pt-3%Cu/ZrO2和1%Ru-3%Cu/ZrO2双金属催化剂,并比较了它们在山梨醇氢解反应中的催化性能.在相同的反应条件下,上述催化剂中1%Pd-3%Cu/ZrO2(Cu/Pd =5)具有最优的活性及乙二醇、丙二醇和甘油的总选择性.以固体碱La(OH)3为助剂,1%Pd-3%Cu/ZrO2的山梨醇氢解活性高达20.3 h-1,是单金属1%Pd/ZrO2(8.7 h-1)和3%Cu/ZrO2(6.5 h-1)催化剂活性的2-3倍,也高于含有相同Pd、Cu含量的1%Pd/ZrO2和3%Cu/ZrO2机械混合体系的活性(12.2 h-1).而且, Pd-Cu/ZrO2双金属催化剂对C2-C3低碳多元醇的选择性也明显优于Pd/ZrO2和Cu/ZrO2以及二者的机械混合体系.这些结果说明Pd对Cu/ZrO2的促进作用不仅仅需要Pd与Cu两种金属的共同存在,还需要它们两者之间的相互作用.进一步发现, Pd-Cu/ZrO2双金属催化剂在Cu/Pd比为1.5-10.0的较宽范围内都表现出了较高的反应活性(17.8-20.3 h-1)以及乙二醇、丙二醇和甘油的总选择性(57.3%-62.8%),说明较低含量Pd的存在就能够有效地改善Cu催化剂的催化性能.在493 K和5.0 MPa H2的反应条件下,以1%Pd-3%Cu/ZrO2为催化剂,在山梨醇接近完全转化时,获得了61.7%的乙二醇、丙二醇和甘油的总选择性.同时, Pd的加入还能有效地抑制水热反应条件下Cu粒子的团聚,使得Pd-Cu/ZrO2催化剂在山梨醇氢解反应中具有优良的水热稳定性和循环使用性能.在5次循环实验中1%Pd-3%Cu/ZrO2的活性和选择性基本保持不变; X-射线粉末衍射结果表明,反应后的催化剂上未观察到Cu的特征衍射峰, Cu粒子仍然保持良好的分散状态.而对于没有Pd修饰的单金属3%Cu/ZrO2催化剂,经5次循环使用后山梨醇氢解反应的活性则下降了42%;在循环反应中Cu粒子显著地聚集而长大到~30 nm. CO吸附漫反射红外光谱结果揭示了Cu粒子倾向于在Pd粒子表面沉积,随着Cu/Pd原子比的增大, Cu粒子逐渐稀释并覆盖Pd的表面位点,说明Pd与Cu粒子之间存在紧密的接触.氢气程序升温还原结果表明,可能与氢溢流有关, Pd的加入促进了CuO的还原.然而,不同于Pd/ZrO2和Cu/ZrO2机械混合样品的TPR图谱,其显示PdO和CuO各自的还原峰, Pd-Cu双金属催化剂则只存在一个宽化的还原峰,这说明了Pd-Cu之间结构上的紧密接触使得两种金属之间存在强相互作用,其中可能存在从Pd向Cu的电子转移.综合这些结构和电子效应,可以推测Pd的存在促进了Cu粒子对山梨醇的脱氢能力和不饱和中间体的加氢能力,进而提高了Cu基催化剂在山梨醇氢解反应中的活性及目标产物的选择性.同时Pd-Cu之间的强相互作用和氢溢流效应抑制了Cu粒子在水热反应条件下的聚集,提高了催化剂的稳定性.这些结果和认识有助于指导人们为多元醇氢解和其它生物质基化学品的转化反应设计具有更高效率和水热稳定性的新型Cu基催化剂.  相似文献   

14.
固体催化剂用于二元醇分子内环化制内酯的研究   总被引:1,自引:0,他引:1  
纪红兵  王乐夫  佘远斌 《化学学报》2005,63(16):1520-1524
将钌改性的固体催化剂Ru-Co(OH)2-CeO2用于以分子氧作为氧化剂的二元醇的催化氧化内酯化反应中, 发现该催化剂具有很好的催化反应性能. 该催化剂可优先氧化伯碳上的羟基. 对反应机理的研究表明, 活性中心钌首先与反应物形成醇化物, 经β-氧化消除反应使得其中一羟基氧化, 经异构环化、氧化进一步脱氢形成内酯.  相似文献   

15.
朱强  宫红  姜恒  王锐 《合成化学》2016,24(10):856-860
以过渡金属甲基磺酸盐[Mn(CH3SO3)2·2H2O, Cu(CH3SO3)2·4H2O, Co(CH3SO3)2·4H2O和Zn(CH3SO3)2·4H2O]为催化剂,在室温条件下催化醇的四氢吡喃化反应,并对反应条件进行了优化。结果表明:当醇用量为30 mmol,醇和3,4-二氢吡喃摩尔比为1.0 :1.1,甲基磺酸盐用量为1 mmol,二氯甲烷20 mL时,可高效催化醇的四氢吡喃化反应。与路易斯酸催化活性相比,过渡金属甲基磺酸盐催化醇的四氢吡喃化反应效果最好,催化酚的效果较差。用Mn(CH3SO3)2·2H2O和Cu(CH3SO3)2·4H2O催化正丁醇的四氢吡喃化反应,重复使用5次,收率分别为89%和92%。  相似文献   

16.
前驱体物相转变对浆态床合成甲醇催化剂活性的影响   总被引:3,自引:0,他引:3  
采用并流共沉淀法, 通过考察老化温度, 研究CuO/ZnO/Al2O3催化剂前驱体晶相及组成的变化对浆态床催化合成甲醇的反应活性的影响. 结果表明, 前驱体的物相转变对浆态床合成甲醇活性影响显著, 单斜晶系锌孔雀石(Cu,Zn)2CO3(OH)2和斜方晶系绿铜锌矿(Cu,Zn)5(CO3)2(OH)6晶体是产生高活性催化剂的主要物相. 随着Cu2+/Zn2+进入Zn5(CO3)2(OH)6/Cu2CO3(OH)2晶格, 离子同晶取代量增加, 催化剂前驱体中形成了固定铜锌比的锌孔雀石和绿铜锌矿物相. 焙烧后催化剂比表面积增大, CuO-ZnO固溶体协同作用加强, 浆态床催化合成甲醇的活性提高.  相似文献   

17.
采用共沉淀法制备了Ru/A1OOH催化剂,以XRD,TG/DTA,TEM和氮物理吸附等手段对其基本物化性质进行了表征.在苯液相选择加氢制备环己烯的反应中,该催化剂显示了很高的苯选择加氢活性和选择性,环己烯得率可达35.8%,优于原位焙烧上述催化剂或浸渍法制得的Ru/γ-A12O3催化剂.催化剂结构与催化性能的对比研究进一步揭示催化剂的亲水性和孔结构在苯选择加氢反应中的重要作用.  相似文献   

18.
本研究考察了不同载体(CeO2、ZrO2、MnO2、SiO2和活性炭)对负载型Ru基费托合成制烯烃(FTO)催化剂结构和催化性能的影响。结果表明,载体的本征属性和金属-载体相互作用(MSI)对催化性能有很大影响。在同一反应条件下的催化活性关系为:Ru/SiO2> Ru/ZrO2> Ru/MnO2> Ru/AC> Ru/CeO2。对于烯烃选择性,Ru/SiO2和Ru/MnO2得到的总烯烃选择性最高,超过70%,而Ru/ZrO2催化剂的烯烃选择性低至29.9%。由于金属Ru与SiO2的金属载体相互作用较弱,反应后的Ru/SiO2催化剂得到适中的Ru纳米颗粒尺寸(~5 nm)且反应活性也最高。对于Ru/AC和Ru/MnO2,其Ru纳米颗粒尺寸仅为1-3 nm,表现出...  相似文献   

19.
山梨醇和木糖醇等多元醇是可再生生物质转化合成液体燃料和化学品的重要平台分子,其中,可通过选择氢解反应一步制备乙二醇和丙二醇等重要化工原料,有望代替从乙烯和丙烯制备二元醇的传统石油化工工艺.目前文献中多元醇氢解反应主要使用Ru基和Ni基催化剂等,但是不可避免地生成C-C键非选择性断裂的副产物甲烷等.与之相比,非贵金属Cu基催化剂往往具有较优异的选择性,但其活性较低和水热稳定性较差.因此,到目前为止研制具有高活性和选择性、以及良好水热稳定性的Cu基催化剂用于生物质基多元醇氢解反应仍然存在挑战.在本文中,我们采用贵金属修饰的方法提高Cu基催化剂在山梨醇选择氢解反应中的活性和水热稳定性.通过分步浸渍法合成了1%Pd-3%Cu/ZrO2、1%Pt-3%Cu/ZrO2和1%Ru-3%Cu/ZrO2双金属催化剂,并比较了它们在山梨醇氢解反应中的催化性能.在相同的反应条件下,上述催化剂中1%Pd-3%Cu/ZrO2(Cu/Pd=5)具有最优的活性及乙二醇、丙二醇和甘油的总选择性.以固体碱La(OH)3为助剂,1%Pd-3%Cu/ZrO2的山梨醇氢解活性高达20.3 h-1,是单金属1%Pd/ZrO2(8.7 h-1)和3%Cu/ZrO2(6.5 h-1)催化剂活性的2-3倍,也高于含有相同Pd、Cu含量的1%Pd/ZrO2和3%Cu/ZrO2机械混合体系的活性(12.2 h-1).而且,Pd-Cu/ZrO2双金属催化剂对C2-C3低碳多元醇的选择性也明显优于Pd/ZrO2和Cu/ZrO 2以及二者的机械混合体系.这些结果说明Pd对Cu/ZrO2的促进作用不仅仅需要Pd与Cu两种金属的共同存在,还需要它们两者之间的相互作用.进一步发现,Pd-Cu/ZrO2双金属催化剂在Cu/Pd比为1.5-10.0的较宽范围内都表现出了较高的反应活性(17.8-20.3 h-1)以及乙二醇、丙二醇和甘油的总选择性(57.3%-62.8%),说明较低含量Pd的存在就能够有效地改善Cu催化剂的催化性能.在493 K和5.0 MPa H2的反应条件下,以1%Pd-3%Cu/ZrO2为催化剂,在山梨醇接近完全转化时,获得了61.7%的乙二醇、丙二醇和甘油的总选择性.同时,Pd的加入还能有效地抑制水热反应条件下Cu粒子的团聚,使得Pd-Cu/ZrO2催化剂在山梨醇氢解反应中具有优良的水热稳定性和循环使用性能.在5次循环实验中1%Pd-3%Cu/ZrO2的活性和选择性基本保持不变;X-射线粉末衍射结果表明,反应后的催化剂上未观察到Cu的特征衍射峰,Cu粒子仍然保持良好的分散状态.而对于没有Pd修饰的单金属3%Cu/ZrO2催化剂,经5次循环使用后山梨醇氢解反应的活性则下降了42%;在循环反应中Cu粒子显著地聚集而长大到~30 nm.CO吸附漫反射红外光谱结果揭示了Cu粒子倾向于在Pd粒子表面沉积,随着Cu/Pd原子比的增大,Cu粒子逐渐稀释并覆盖Pd的表面位点,说明Pd与Cu粒子之间存在紧密的接触.氢气程序升温还原结果表明,可能与氢溢流有关,Pd的加入促进了CuO的还原.然而,不同于Pd/ZrO2和Cu/ZrO2机械混合样品的TPR图谱,其显示PdO和CuO各自的还原峰,Pd-Cu双金属催化剂则只存在一个宽化的还原峰,这说明了Pd-Cu之间结构上的紧密接触使得两种金属之间存在强相互作用,其中可能存在从Pd向Cu的电子转移.综合这些结构和电子效应,可以推测Pd的存在促进了Cu粒子对山梨醇的脱氢能力和不饱和中间体的加氢能力,进而提高了Cu基催化剂在山梨醇氢解反应中的活性及目标产物的选择性.同时Pd-Cu之间的强相互作用和氢溢流效应抑制了Cu粒子在水热反应条件下的聚集,提高了催化剂的稳定性.这些结果和认识有助于指导人们为多元醇氢解和其它生物质基化学品的转化反应设计具有更高效率和水热稳定性的新型Cu基催化剂.  相似文献   

20.
一直以来寻找直接有效的乙烯基官能化合成方法的研究备受关注. 报道了一种新型的有机胺盐酸盐/B(C6F5)3 (BCF)体系催化炔烃与氢氯酸或羧酸的加成反应方法, 可选择性地在炔烃的C(2)位氯代或羧化. 研究了在有机胺盐酸盐/BCF体系催化下, 不同取代的炔烃与无机酸HCl的氢氯化加成反应. 在2,2,4,4-四甲基哌啶盐酸盐/BCF([TMPH]+[Cl-B(C6F5)3]-)催化下, 等物质的量的炔烃和HCl反应时, 端基芳炔的C(2)位一加成产物的比例可高达90%以上, 而端基烷基炔烃的选择性较芳炔差, 叔丁基乙炔的一加成产物只占到67%. 报道了非金属催化剂路易斯酸BCF催化的炔烃与羧酸CF3COOH的烯醇酯化反应, 端基芳炔的C(2)位烯醇酯化产率可达95%以上, 而二苯基乙炔及非芳香性端基炔的反应活性较低. 首次实现了非金属催化剂FLPs参与催化的炔烃与酸的选择性氢氯化和烯醇酯化加成反应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号