首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A new catalyst, Pd particles supported on the N-doped porous carbon(PC) derived from Zn-based metal–organic frameworks(zeolitic imidazolate framework: ZIF-8), was successfully prepared for the first time.The as-prepared catalyst was designated as N-doped PC-Pd, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscope, N_2 adsorption and inductively coupled plasma atomic emission spectroscopy. The N-doped PC-Pd composite exhibited high catalytic activity toward the Suzuki–Miyaura cross-coupling reactions. The yields of the products were in the range of 90%–99%. The catalyst could be readily recycled and reused at least 6 consecutive cycles without a significant loss of its catalytic activity.  相似文献   

2.
Several g-Al2O3 supported Pd–Ni bimetallic nanocatalysts(Pd–Ni(x:y)/Al2O3; where x and y represent the mass ratio of Pd and Ni, respectively) were prepared by the impregnation method and used for selective hydrogenation of cyclopentadiene to cyclopentene. The Pd–Ni/Al2O3 samples were confirmed to generate Pd–Ni bimetallic nanoparticles by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). The catalytic activity was assessed in view of the effects of different mass ratios of Pd and Ni, temperature, pressure, etc. Among all the samples, the Pd–Ni(1:1)/Al2O3(PN-1:1) catalyst showed extremely high catalytic ability. The conversion of cyclopentadiene and selectivity for cyclopentene can be simultaneously more than 90%.  相似文献   

3.
The double perovskite oxides Sr2Mg1-xF exMoO6-δ were investigated as catalysts for the methane oxidation.The structural properties of catalysts were characterized in detail by X-ray diffraction,X-ray photoelectron spectroscopy and X-ray absorption spectroscopy.The catalytic property was strongly influenced by the Fe substitution.The relation between catalytic performance and the degree of Fe substitution was examined with regard to the structure and surface characteristics of the mixed oxides.The Fe-containing catalysts exhibited higher activity attributable to the possible(Fe2+,Mo6+) and (Fe3+,Mo5+)valency pairs,and the highest activity was observed for Sr2Mg0.2Fe0.8MoO6-δ.The enhancement of the catalytic activity may be correlated with the Fe-relating surface lattice oxygen species and was discussed in view of the presence of oxygen vacancies.  相似文献   

4.
 A series of Ce1MgxZr1-xO2 mixed metal oxides with different molar ratios were prepared by simple co-precipitation and were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, temperature-pro- grammed desorption of CO2, and N2 adsorption techniques. The prepared materials were tested for catalytic activity by the synthesis of tet-rahydrobenzo[b]pyran derivatives using a three component reaction (aromatic aldehydes, malononitrile, and dimedone) in an ethanol me-dium. The best catalytic activity was obtained with Ce1Mg0.6Zr0.4O2. The particle size or crystallite size was estimated using the De-bye-Scherrer equation. The addition of magnesium oxide into the ceria-zirconia lattice resulted in the formation of nanosized particles rang-ing from 5.41 to 9.78 nm. This work describes the catalytic behavior of magnesium oxide in mixed metal oxide systems.  相似文献   

5.
A series of pyrochlore oxides, R2Ru2O7 (R=Pr3+, Sm3+–Ho3+) were synthesized under mild hydrothermal conditions. All the samples crystallize in uniform octahedron characteristically. The products were characterized by powder X-ray diffraction, scanning electron microscopy, energy-disperse X-ray spectroscopy, and dc susceptibility, and the factors that affected the crystallization were discussed. It was found that the purity of products depends strongly on the raw materials and the amount of alkalinity in the...  相似文献   

6.
Cr-free bi-metallic SBA-15-supported Co–Cu catalysts were examined in the conversion of bio-mass-derived α-, β-unsaturated aldehyde (furfural) to value-added chemical furfuryl alcohol (FOL). Co–Cu/SBA-15 catalysts with a fixed Cu loading of 10 wt% and varying Co loadings (2.5, 5, and 10 wt%) were prepared by the impregnation method. The catalysts were characterized by X-ray dif-fraction, N2 sorption, H2 temperature-programmed reduction, scanning electron microscopy, ener-gy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, CO chemi-sorption, and inductively coupled plasma mass spectrometry. The influence of different reaction parameters such as temperature, pressure, catalyst dosage, and furfural concentration on the cata-lyst performance was evaluated. Relative to catalysts supported on amorphous silica, the current SBA-15-supported Co–Cu catalysts displayed higher performance, attaining a furfural conversion of 99% and furfuryl alcohol selectivity of 80%. The catalytic reactions were conducted in a 100-mL autoclave at 170 °C and 2 MPa H2 pressure for 4 h.  相似文献   

7.
Ni-Co alloys were electroplated from sulphate electrolyte using addition agents including sodium gluconate,boric acid and cysteine on copper foil by the galvanostatic technique and ultrasound waves.The chemical composition,surface morphologies,crystalline structure and hardness of the Ni-Co alloys were studied using energy dispersive spectroscopy,scanning electron microscope,X-ray diffraction and Vickers testing method,respectively.The effect of current density and addition agents on the microstructure and morphology of Ni-Co alloys were examined.The appropriate concentration of additives and ultrasound waves were found to produce fine and smooth crystals leading to higher hardness of Ni-Co alloys.The microhardness of the Ni-Co alloys was varied between 4860–7530 HV.The surface morphology of coatings was changed from granular to fine due to using of gluconate,boric acid,cysteine and ultrasound waves.The mechanical properties of nanocrystalline Ni-Co alloys showed an increase of the hardness with the growing of Ni content in the alloy.The X-ray diffraction studies indicated that nanocrystalline structure was face-centred cubic for pure Ni and Ni-Co alloys with Co content in the range of 1–75 wt.%.A hexagonal closed-package structure was obtained for pure Co and Ni-Co alloys with the cobalt content with range of 75–99wt.%.  相似文献   

8.
Cr-free bi-metallic SBA-15-supported Co–Cu catalysts were examined in the conversion of biomass-derived α-, β-unsaturated aldehyde(furfural) to value-added chemical furfuryl alcohol(FOL).Co–Cu/SBA-15 catalysts with a fixed Cu loading of 10 wt% and varying Co loadings(2.5, 5, and 10 wt%) were prepared by the impregnation method. The catalysts were characterized by X-ray diffraction, N2 sorption, H2 temperature-programmed reduction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, CO chemisorption, and inductively coupled plasma mass spectrometry. The influence of different reaction parameters such as temperature, pressure, catalyst dosage, and furfural concentration on the catalyst performance was evaluated. Relative to catalysts supported on amorphous silica, the current SBA-15-supported Co–Cu catalysts displayed higher performance, attaining a furfural conversion of 99% and furfuryl alcohol selectivity of 80%. The catalytic reactions were conducted in a 100-mL autoclave at 170 °C and 2 MPa H2 pressure for 4 h.  相似文献   

9.
The complex fluoride,KNiF3,with perovskite structure was synthesized by refluxing KF and Ni(NO3)2·6H2O in ethanediol.The samples were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),and ultraviolet-visible diffuse reflectance spectroscopy(UV-Vis DRS).The results indicate that the mean diameter of KNiF3 particles is about 30―60 nm and the oxygen content in the samples is≤5%.The prepared KNiF3 shows obvious absorption peaks at 400―830 nm.  相似文献   

10.
李迪  李景虹 《中国化学》2003,21(4):392-395
3-Mercaptopropionic acid monolayer protected gold nanoclusters (MPA-MPCs) were synthesized and characterized by transmission electorn microscopy,UV-Vis spectroscopy,X-ray photoelectron spectroscopy and Fourler transform infrared spectroscopy.The exact value of quantized double-layer capacitance of MPCs in aqueous media was obtained by differential pulse voltammograms.  相似文献   

11.
A pyridoxal-based chemosensor was synthesized by reacting hydrazine hydrate and pyridoxal hydrochloride in ethanol and characterized by NMR and ESI-MS.The optical properties of the compound were investigated in a methanol:HEPES solution.The compound displayed selectivity for Cu2+,as evidenced by a colorless to yellow color change,which was characterized using UV–vis spectroscopy.The fluorescence of the compound can be quenched only by Cu2+,accompanying by a color change from blue to colorless.Furthermore,it can be used in bioimaging.  相似文献   

12.
Dry reforming of methane by CO2 using nickel ferrite as precursor of catalysts was investigated.Nickel ferrite crystalline particles were prepared by coprecipitation of nitrates with NaOH or ammonia followed by calcination,or by hydrothermal synthesis without calcination step.The textural and structural properties were determined by a number of analysis methods,including X-ray diffraction (XRD),Raman spectroscopy and X-ray photoelectron spectroscopy (XPS),among which X-ray diffraction (XRD) was at room and variable temperatures.All synthesized oxides showed the presence of micro or nanoparticles of NiFe2O4 inverse spinel,but Fe2O3 (hematite) was also present when ammonia was used for coprecipitation.The reducibility by hydrogen was studied by temperature-programmed reduction (TPR) and in situ XRD,which showed the influence of the preparation method.The surface area (BET),particle size (Rietveld refinement),as well as surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied according to the synthesis method.The catalytic reactivity was investigated using isopropanol decomposition to determine the acid/base properties.The catalytic performance of methane reforming with CO2 was measured with and without the pre-treatment of catalysts under H2 in 650-800 C range.The catalytic conversions of methane and CO2 were quite low but they increased when the catalysts were pre-reduced.A significant contribution of reverse water gas shift reaction accounted for the low values of H2 /CO ratio.No coking was observed as shown by the reoxidation step performed after the catalytic reactions.The possible formation of nickel-iron alloy observed during the study of reducibility by hydrogen was invoked to account for the catalytic behavior.  相似文献   

13.
Azide-functionalization of single-walled carbon nanotubes (SWCNTs) was achieved by electrochemical oxidation of N3 in situ. The functionalized nanotubes were characterized in details by single internal reflection infrared spectroscopy (ATR-FTIR) and thermogravimetic analysis (TGA/MS). The results revealed that a covalent C-N bond had formed and this might provide an effective method for the preparation of azide-functionalized materials, especially carbon materials. The degree of functionaliza- tion was measured by X-ray photoelectron spectroscopy (XPS).  相似文献   

14.
Li0.33MnO2 cathode material was synthesized by solid state reaction. The material showed a small coherent domain size about 10 nm determined by X-ray diffraction and transmission electron microscopy. The electrochemical properties of the material were studied in different potential windows of 3.5―2.0 V and 4.3―2.0 V. An irreversible transformation to spinel phase was observed in the initial several cycles, which was more prominent on cycling at 4.3―2.0 V. Electrochemical impedance spectroscopy showed that the Li+ diffusion coefficient of the material was about 2×10–9 cm2/s. Li0.33MnO2 showed a reversible discharge capacity of 140 and 200 mA·h/g in the potential windows of 3.5―2.0 V and 4.3―2.0 V, respectively. But the capacity retention at 4.3―2.0 V was poor due to the thicker spinel layer formed on the material surface.  相似文献   

15.
In this work,γ-Al_2O_3 and hydrogen peroxide treated g-C_3N_4(O-g-C_3N_4) were combined through a novel in-situ hydrothermal method to form heterojunction structured photocatalysts.These photocatalysts were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),UV–vis diffuse reflectance spectroscopy and photoluminescence spectroscopy(PL).FT-IR results indicate that oxygen functional groups can be grafted on the surface of O-g-C_3N_4 by hydrogen peroxide treatment.The visible light photocatalytic hydrogen evolution rate was investigated in 10 vol% TEOA aqueous solution.The optimal Al_2O_3 mass content is set to be 20 wt% and the corresponding hydrogen evolution rate is 1288 μmol/h/g which is approximately 6,3 folds that of pristine g-C_3N_4 and O-g-C_3N_4 respectively and 1.6 folds that of mechanical mixed composite with the same Al_2O_3 mass content.The photocurrent density–time curves were carried out under visible light illumination for four on–off cycles.The electrochemical impedance spectroscopy(EIS) measurements verified the enhanced separation efficiency of electron–hole pairs.This work raised a new method to form the heterojunction structured photocatalysts and achieved a remarkable improvement of the photocatalytic activity in water splitting for hydrogen under visible light irradiation.  相似文献   

16.
The interaction of colloidal gold with Taq DNA polymerase (Taq) was investigated in this study. Taq-gold conjugate was formed by adding the enzyme to the colloidal gold solution, as evidenced by UV-Vis spectroscopy, X-ray photoelectron spectroscopy, and photon cross correlation spectroscopy measurements. The conjugate was further characterized by transmission electron microscopy. It was found that the Taq-gold conjugate particles were still spherical and well-dispersed. The influence of gold nanoparticles on the bioactivity of Taq was studied by analyzing the yield of the polymerase chain reaction amplification. Results indicated that the enzymatic activity of Taq decreased after interaction with the colloidal gold.  相似文献   

17.
A simple,efficient and green procedure for the synthesis of spiro-oxindole dihyfroquinazolinones was developed by multi-component condensation of isatoic anhydride,aniline and isatin in the presence of a novel solid acid catalyst under ultrasound irradiation.The present environmentally benign protocol offers several advantages, such as shorter reaction time,a wide range of fimctional group tolerance,the use of an inexpensive heterogeneous catalyst,and a high yield of products via a simple experimental and work-up procedure.The mesoporous solid acid catalyst was directly prepared from phytic acid by microwave-sulfonation method without template.The phytic acid based solid acid was fully characterized by means of Fourier transform infrared spectroscopy(FTIR),Raman spectroscopy,X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),and transmission electron imcroscopy(TEM).The catalyst can be recovered and reused for at least five runs without significant impact on the product yields.  相似文献   

18.
CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductively coupled plasma atomic emission spectroscopy,X-ray diffraction,temperature-programmed reduction,field emission scanning electron microscopy and thermo-gravimetric analysis.Over CuOCeO2 catalysts,H2 with low CO content was produced in the whole tested temperature range of 250–450 C.The non-noble metal catalyst 20CuCe showed higher H2production rate than 1%Rh/CeO2 catalyst at 300–400 C and the advantage was more obvious after 20 h testing at400 C.These results further confirmed that CuO-CeO2 catalysts may be suitable candidates for low temperature hydrogen production from ethanol.  相似文献   

19.
Pd/Ce0.8Zr0.2O2 catalysts modified by cobalt were prepared by a sequential impregnation method and characterized by X-ray powder diffraction(XRD), N2adsorption/desorption(Brunauer-Emmet-Teller), oxygen storage capacity(OSC), CO-chemisorption, H2-temperature-programmed reduction(H2-TPR) and X-ray photoelectron spectroscopy(XPS). The effect of Co on the performance of methanol decomposition was evaluated at a fixed-bed microreactor. The results showed that the addition of Co can improve the oxygen storage capacity of the catalyst and the dispersion of Pd. XPS results indicated that Pd was in a partly oxidized(Pdδ+, 1δ2) state and Co2+was present in Pd catalysts modified by Co. A 90% conversion of methanol was achieved at around 280°C over Pd-Co/Ce0.8Zr0.2O2 catalyst which was 20°C lower than that over Pd/Ce0.8Zr0.2O2, indicating that both Pdδ+and Co2+play an important role in improving the catalytic activity of methanol decomposition.  相似文献   

20.
Pd/Ce0.8Zr0.2O2 catalysts modified by cobalt were prepared by a sequential impregnation method and characterized by X-ray powder diffraction(XRD), N2adsorption/desorption(Brunauer-Emmet-Teller), oxygen storage capacity(OSC), CO-chemisorption, H2-temperature-programmed reduction(H2-TPR) and X-ray photoelectron spectroscopy(XPS). The effect of Co on the performance of methanol decomposition was evaluated at a fixed-bed microreactor. The results showed that the addition of Co can improve the oxygen storage capacity of the catalyst and the dispersion of Pd. XPS results indicated that Pd was in a partly oxidized(Pdδ+, 1δ2) state and Co2+was present in Pd catalysts modified by Co. A 90% conversion of methanol was achieved at around 280°C over Pd-Co/Ce0.8Zr0.2O2 catalyst which was 20°C lower than that over Pd/Ce0.8Zr0.2O2, indicating that both Pdδ+and Co2+play an important role in improving the catalytic activity of methanol decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号