首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hydrotalcite-like Mg2 /Al3 layered double hydroxide (LDH) material was prepared by means of amodified coprecipitation method involving a rapid mixing step followed by a separate aging process. LDH calcined at 500℃ , denoted as CLDH, was characterized by XRD, IR and BET surface area measurements.CLDH has a poor crystalline MgO-like structure with a high surface area and porosity. CLDH was used as asupport for the immobilization of penicillin G acylase(PGA). The effect of varying the immobilization conditions, such as pH, contact time and the ratio of enzyme to support, on the activity of the immobilized enzymein the hydrolysis of penicillin G has been studied. It was found that the activity of the immobilized enzyme decreased slightly with decreasing pH and reached a maximum after a contact time of 24 h. The activity of theimmobilized enzyme increased with increasing the ratio of enzyme to support. It was found that the adsorption of PGA inhibited the expected reaction of CLDH with an aqueous medium to regenerate a LDH phase. Itsoriginal activity(36%) after 15 cycles of reuse of the immobilized enzyme was retained, but no further loss in the activity was observed.  相似文献   

2.
Reported here is a protocol to fabricate a biocatalyst with high enzyme loading and activity retention, from the conjugation of electrospun nanofibrous membrane having biomimetic phospholipid moiety and lipase. To improve the catalytic efficiency and activity of the immobilized enzyme, poly(acrylonitrile-co-2-methacryloyloxyethyl phosphorylcholine)s(PANCMPCs) were, respectively, electrospun into nanofibrous membranes with a mean diameter of 90 nm, as a support for enzyme immobilization. Lipase from Candida rugosa was immobilized on these nanofibrous membranes by adsorption. Properties of immobilized lipase on PANCMPC nanofibrous membranes were compared with those of the lipase immobilized on the polyacrylonitrile(PAN) nanofibrous and sheet membranes, respectively. Effective enzyme loading on the nanofibrous membranes was achieved up to 22.0 mg/g, which was over 10 times that on the sheet membrane. The activity retention of immobilized lipase increased from 56.4% to 76.8% with an increase in phospholipid moiety from 0 to 9.6%(molar fraction) in the nanofibrous membrane. Kinetic parameter Km was also determined for free and immobilized lipase. The Km value of the immobilized lipase on the nanofibrous membrane was obviously lower than that on the sheet membrane. The optimum pH was 7.7 for free lipase, but shifted to 8.3-8.5 for immobilized lipases. The optimum temperature was determined to be 35 ℃ for the free enzyme, but 42-44℃ for the immobilized ones, respectively. In addition, the thermal stability, reusability, and storage stability of the immobilized lipase were obviously improved compared to the free one.  相似文献   

3.
Urease was immobilized onto the glutaraldehyde cross-linked chitosan beads that were prepared under microwave irradiation. The activity and the yield of activity of immobilized urease was 10.83 U/g B and 47.7%, respectively. The conditions of urease immobilization were optimized. The properties of the immobilized urease were investigated and compared with that of the free enzyme.  相似文献   

4.
Nanocrystalline MgO with a relatively high surface area and mesoporous structure was synthesized by a surfactant assisted precipitation method for use as the support of nickel catalysts for steam reforming of methane. The samples were characterized by X‐ray diffraction, N2 adsorption, temperature‐programmed reduction, temperature‐programmed oxidation, scanning electron microscopy, and transmission electron microscopy. The catalysts showed high catalytic activity and good stability in the steam reforming of methane. Increasing the nickel loading up to 10 wt% gave increased activity. Catalysts with higher nickel loadings showed more deposited carbon after reaction. The excellent anti‐coking performance of the catalysts was attributed to the formation of a nickel‐magnesia solid solution, basicity of the support surface, and nickel‐support interaction.  相似文献   

5.
A novel method for the immobilization of acetylcholinesterase (AChE) on amino modified SBA-15 mesoporous molecular sieves was developed via electrostatic adsorption and glutaraldehyde crosslinking. The immobilized AChE could be exploited as a fast, sensitive and low-cost biocatalyst towards the detection of pesticides residues which could be stored at room temperature for a long time.  相似文献   

6.
Lipase was immobilized by covalent binding on crosslinked allyl dextran using SESA as coupling agent.It is shown that this immobilization approach is an efficient one for lipase.The activity of the immobilized lipase can reach to 300-450U/g(dry weight).It exhibits good temperature stability,can retain 88% activity after being incubated at 70℃ for 2h.Special effects will be expected from our immobilized lipase in its applications in organic media due to the nature of the support.  相似文献   

7.
A kind of macroporous bead carrier of copolymer containing monomer units of N-aminoethyl acrylamide and vinylalcohol was synthesized, i.e. the MR-AA carrier. Papain was immobilized on the carrier using glutaraldehyde as the couplingagent. The enzymatic activity of the immobilized papain was compared with free papain using casein as a substrate, and theeffects of glutaraldehyde concentration, pH, temperature, time and papain amount added on the activity recovery were alsoinvestigated. The results show that the MR-AA carrier contains reactive primary amine groups, hydrophilic amido links andhydroxyl groups, as well as macroporous structures based on its matrix (MR-AV matrix), furthermore, the activity recoveryof papain in the immobilization could reach 48%/~58%. In comparison with free papain, the resulting immobilized papainexhibits a remarkable thermostability and better reusability.  相似文献   

8.
Magnetic Cu2+-chelated silica particles using polyacrylamide as a metal-chelating ligand was developed and used for the immobilization of laccase by coordination.The effect of pH and temperature on the enzymatic property of immobilized laccase and its catalytic capacity for pentachlorophenol(PCP) degradation were evaluated systemically.Compared with free laccase,the immobilized laccase showed improved acid adaptabihty and thermal stability.The immobilized laccase prepared in this work exhibited a good catalytic capacity for PCP removal from aqueous solutions.  相似文献   

9.
 A kind of macroporous bead carrier of copolymer containing monomer units of N-aminoethyl acrylamide and vinylalcohol was synthesized, i.e. the MR-AA carrier. Papain was immobilized on the carrier using glutaraldehyde as the couplingagent. The enzymatic activity of the immobilized papain was compared with free papain using casein as a substrate, and theeffects of glutaraldehyde concentration, pH, temperature, time and papain amount added on the activity recovery were alsoinvestigated. The results show that the MR-AA carrier contains reactive primary amine groups,hydrophilic amido links and hydroxyl groups,as well as macroporous structures based on its matrix (MR-AV matrix),furthermore,the activity recovery of papain in the immobilization could reach 48%~58%.In comparison with free papain,the resulting immobilized papain exhibits a remarkable thermostability and better reusability.  相似文献   

10.
Solid state bio-processing of wheat straw was carried out through an indigenous fungal strain Pleurotus ostreatus IBL-02 under pre-optimized fermentation conditions. The maximum activity, 692±12 U/mL, of the industrially important manganese peroxidase (MnP) enzyme was recorded after five days of still culture incubation. The crude MnP was 2.1-fold purified with a specific activity of 860 U/mg after purification on a Sephadex-G-100 gel column. On native and SDS-PAGE electrophoresis gels, the purified MnP fraction was a single homogenous band of 45 kDa. An active fraction of MnP was immobilized using hydrophobic sol-gel entrapment comprising tetramethoxysilane (T) and propyltrimethoxysilane (P) at different T:P molar ratios. Characterization revealed that after 24 h incubation at varying pH and temperatures, the MnP fraction immobilized at a T:P ratio of 1:2 in the sol-gel retained 82% and 75% of its original activity at pH4 and 70 ℃, respectively. The optimally active fraction at a 1:2 T:P ratio was tested against MnSO4 as a substrate to determine the kinetic catalytic constants KM and Vmax . To explore the industrial applicability of P. ostreatus IBL-02 MnP, both the free and immobilized MnP were used for the decolorization of four different textile industrial effluents. A maximum of 100% decolorization was achieved for the different textile effluents within the shortest time period. A lower KM , higher Vmax , hyper-activation, and enhanced acidic and thermal resistance up to 70 ℃ were the novel catalytic features of the sol-gel immobilized MnP, suggesting that it may be a potential candidate for biotechnological applications particularly for textile bioremediation purposes.  相似文献   

11.
An experimental design with factorial planning was used for the immobilization of the enzyme cyclodextringlycosyltransferase (CGTase) from Bacillus firmus (strain no.37) to select the best combination of support, method of immobilization, and conditions that gives primarily higher average values for the specific immobilized enzyme activity, and secondarily, higher average values for the percentage of protein fixation. The experimental design factors were as follows: supports—controlled-pore silica, chitosan, and alumina; immobilization methods—adsorption, and two covalent bonding methods, either with γ-aminopropyltriethoxysilane or hexamethylenediamine (HEMDA); conditions—7°C without agitation and 26°C with stirring. The best combination of factors that lead to higher average values of the response variables was obtained with immobilization of CGTase in silica with HEMDA at 7°C. However, immobilization in chitosan at 7°C gave the highest immobilized CGTase specific activity, 0.25 μmole of β-CD/(min·mg protein). Physical adsorption gave low specific enzyme activities, and, in general, a high load of enzyme leads to lower specific enzyme activity.  相似文献   

12.
The objective of this work was to select an efficient methodology for preparing active samples of Candida rugosa lipase immobilized in wood cellulignin, to be applied in hydrolysis and ester reactions. For this purpose, lipase was immobilized in the matrix by physical adsorption (pure cellulignin) and covalent binding (activated cellulignin with glutaraldeyde or carbonyldiimidazole [CDI]) in the presence or absence of polyethylene glycol (PEG) (Molecular mass of 1500 Daltons) as stabilizing agent. The activating agent and the presence of PEG-1500 in the immobilization procedure showed a strong influence on enzyme retention in the support. The values for enzyme retention ranged from 20 to 68%, and the highest yield was obtained when the enzyme was immobilized in cellulignin activated with CDI in the presence of PEG-1500. This immobilized derivative presented high hydrolytic (193.27 μM/[mg·min]) and synthetic (522.92 μM/[g·min]) activities when compared with those obtained by other techniques. The superiority of this immobilized system was confirmed by additional analyses, such as infrared spectroscopy and elemental analysis, which demonstrated an appropriate enzyme fixation and the highest level of protein incorporation in the support. Further information on the immobilized derivative was obtained by assessing the recycle potential in both aqueous and nonaqueous media.  相似文献   

13.
STUDY ON IMMOBILIZED THERMOLYSIN WITH CELLULOSE AS CARRIER   总被引:1,自引:0,他引:1  
With cellulose as carrier,immobilized thermolysin HE I and HE Ⅱ were prepared by diazo coupling or glutaraldehyde crosslinking reaction.Using casein as a substrate,the activity recovery of immobilized thermolysin HE I and HE Ⅱ reach 34.5% and 29%,respectively.Some factors which affect the activity of the immobilized thermolysin such as temperature,medium pH,EDTA and calcium acetate were studied.At the same time,the thermal stability and storage stability of the immobilized thermolysin were also investigated.  相似文献   

14.
Synthesized macroporous cross-linked copolymers of methyl acrylate-divinyl benzene (MA-DVB), acrylamide-N,N'-methylenebisacrylamide (AAM-BIS) and their functionalized products were used for immobilization of aminoacylase from Aspergillus oryzae. Effects of the carrier properties on the activity of immobilized aminoacylase were investigated and effects of substrate concentration, pH, phosphate buffer concentration and temperature on the immobilized aminoacylase were compared with those of the soluble aminoacylase. A column of immobilized aminoaoylase was prepared and used for continuous resolution of N-acyl-DL-methionine; the operational stability of immobilized enzyme was also investigated.  相似文献   

15.
The negatively charged (at pH 8.2) glucose oxidase (GOx, pI ca. 4.2) was assembled onto the surface of single-walled carbon nanotubes (SWNT), which was covered (or wrapped) by a layer of positively charged polyelectrolyte poly(dimethyldiallylammonium chloride) (PDDA), via the electrostatic interaction forming GOx-PDDASWNT nanocomposites. Fourier transform infrared (FTIR), UV-Vis and electrochemical impedance spectroscopy (EIS) were used to characterize the growth processes of the nanocomposites. The results indicated that GOx retained its native secondary conformational structure after it was immobilized on the surface of PDDA-SWNT. A biosensor (Nafion-GOx-PDDA-SWNT/GC) was developed by immobilization of GOx-PDDA-SWNT nanocomposites on the surface of glassy carbon (GC) electrode using Nafion (5%) as a binder. The biosensor showed the electrocatalytic activity toward the oxidation of glucose under the presence of ferrocene monocarboxylic acid (FcM) as an electroactive mediator with a good stability, reproducibility and higher biological affinity. Under an optimal condition, the biosensor could be used to detection of glucose, presenting a typical characteristic of Michaelis-Menten kinetics with the apparent Michaelis-Menten constant of KM^app ca. 4.5 mmol/L, with a linear range of the concentration of glucose from 0.5 to 5.5 mmol/L (with correlation coefficient of 0.999) and the detection limit of ca. 83 μmol/L (at a signal-to-noise ratio of 3). Thus the biosensor was useful in sensing the glucose concentration in serum since the normal glucose concentration in blood serum was around 4.6 mmol/L. The facile procedure of immobilizing GOx used in present work would promote the developments of electrochemical research for enzymes (proteins), biosensors, biofuel cells and other bioelectrochemical devices.  相似文献   

16.
The properties of immobilized glucose oxidase (GOD) by the complexes of diethylaminoethyl cellulose(DEAEC) with different polymers, such as polymethylacrylic acid (PMAA), polyacrylic acid (PAA), polystyrene sulfonic acid (PSSA), polyvinylaleohol (PVA), polyethylene oxide (PEO) and styrene-maleic acid copolymer (PSMA) were investigated. The activity of immobilized GOD was obviously influenced by the component of the DEAEC complexes. The relative activity of the immobilized GOD reached to maximum and over 90% of the native GOD. when the DEAEC-PMAA DEAEC-PAA complexes were used as a carrier with the molar ratio of DEAEC and polyacid of about one. Michaelis constants (Km) of the immobilized enzymes of DEAEC-GOD-PMAA and DEAEC-GOD-PAA were determined to be 1.25 and 1.00, respectively. Moreover, the immobilized GOD has a good storage stability and cyclic life.  相似文献   

17.
An ultrasound‐assisted aldol condensation reaction has been developed for a range of ketones with a variety of aromatic aldehydes using poly(N‐vinylimidazole) as a solid base catalyst in a liquid‐solid system. The catalyst can be recovered by simple filtration and reused at least 10 times without any significant reduction in its activity. The reaction is also amenable to the large scale, making the procedure potentially useful for industrial applications.  相似文献   

18.
The preparation,characterization,and application of silica-coated magnetic nanoparticles for papain immobilization is reported.Papain was covalently attached onto the(3-chloropropyl) trimethoxysilane-modified silica-coated magnetic nanoparticles. The enzyme-immobilized nanoparticles were characterized by Fourier transform infrared spectroscopy,X-ray powder diffraction,scanning electron microscopy,and vibrating sample magnetometry techniques.Response surface methodology combined with statistical analyses using Minitab were employed to evaluate optimum operating conditions to immobilize papain on the magnetic nanoparticles.The optimum conditions were: temperature = 27.3℃,pH of the enzyme solution = 7.1,concentration of papain = 3.3 mg/mL,and immobilization time = 10 h.Compared with the free papain,the immobilized papain displayed enhanced enzyme activity,better tolerance to variations in the medium pH and temperature,improved storage stability,and good reusability.Both the free and immobilized enzymes were effective for the clarification of pomegranate juice.  相似文献   

19.
The activity and thermal stability of Pd/Al_2O_3 and Pd/(Al_2O_3 MO_x)(M=Ca,La,Ce) palladium catalysts in the reaction of complete oxidation of methane are presented in this study.The catalyst supports were prepared by sol-gel method and they were dried either conventionally or with supercritical carbon dioxide.Then they were impregnated with palladium nitrate solution.The catalysts with unmodified alumina had a high surface area.The activity and thermal stability of the alumina- supported catalyst was also very high.The introduction of calcium,lanthanum,or cerium oxide into alumina support caused a decrease of the surface area in the way dependent on the support precursor drying method.These modifiers decreased the activity of palladium catalysts,and they required higher temperatures for the complete oxidation of methane than unmodified Pd/Al_2O_3.The improvement of the palladium activity by lanthanum and cerium support modifier was observed only at low temperatures of the reaction.  相似文献   

20.
A carbon nanotube-supported NiP amorphous catalyst (NiP/CNT) was prepared by induced reduction. Benzene hydrogenation was used as a probe reaction for the study of catalytic activity. The effects of the support on the activity and thermal stability of the supported catalyst were discussed based on various characterizations, including XRD, TEM, ICP, XPS, H2-TPD, and DTA. In comparison with the NiP amorphous alloy, the benzene conversion on NiP/CNT catalyst was lower, but the specific activity of NiP/CNT was higher, which is attributed to the dispersion produced by the support, an electron-donating effect, and the hydrogen-storage ability of CNT. The NiP/CNT thermal stability was improved because of the dispersion and electronic effects and the good heat-conduction ability of the CNT support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号