共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical study is carried out for the axisymmetric steady laminar incompressible flow of an electrically conducting micropolar fluid between two infinite parallel porous disks with the constant uniform injection through the surface of the disks. The fluid is subjected to an external transverse magnetic field. The governing nonlinear equations of motion are transformed into a dimensionless form through von Karman’s similarity transformation. An algorithm based on a finite difference scheme is used to solve the reduced coupled ordinary differential equations under associated boundary conditions. The effects of the Reynolds number, the magnetic parameter, the micropolar parameter, and the Prandtl number on the flow velocity and temperature distributions are discussed. The results agree well with those of the previously published work for special cases. The investigation predicts that the heat transfer rate at the surfaces of the disks increases with the increases in the Reynolds number, the magnetic parameter, and the Prandtl number. The shear stresses decrease with the increase in the injection while increase with the increase in the applied magnetic field. The shear stress factor is lower for micropolar fluids than for Newtonian fluids, which may be beneficial in the flow and thermal control in the polymeric processing. 相似文献
2.
In this paper, the steady boundary layer flow and heat transfer of a micropolar fluid on an isothermal continuously moving plane surface is studied analytically. It is assumed that the microinertia density is variable and the viscous dissipation effect is taken into account. The system of nonlinear ordinary differential equations is solved analytically using the homotopy analysis method (HAM) and the results are obtained for various flow and heat transfer characteristics. By using HAM, accurate analytic series solutions are obtained in the whole spatial region. Also, a new suggestion for choosing the proper value of the auxiliary parameter ? in the convergence region is proposed. It is observed that the present solutions have higher accuracy when the residual error is obtained. The present results show that this algorithm is effective and can be similarly applied to other nonlinear equations. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
3.
Numerical investigations of asymmetric flow of a micropolar fluid between two porous disks 总被引:1,自引:0,他引:1
Numerical solution is presented for the two- dimensional flow of a micropolar fluid between two porous coaxial disks of different permeability for a range of Reynolds number Re (-300≤ Re 〈 0) and permeability parameter A (1.0≤A ≤2.0). The main flow is superimposed by the injection at the surfaces of the two disks. Von Karman's similarity transformations are used to reduce the governing equations of motion to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. An algorithm based on the finite difference method is employed to solve these ODEs and Richardson's extrapolation is used to obtain higher order accuracy. The results indicate that the parameters Re and A have a strong influence on the velocity and microrotation profiles, shear stresses at the disks and the position of the viscous/shear layer. The micropolar material constants cl, c2, c3 have profound effect on microrotation as compared to their effect on streamwise and axial velocity profiles. The results of micropolar fluids are compared with the results for Newtonian fluids. 相似文献
4.
The flow of a micropolar fluid through a porous channel with expanding or contracting walls of different permeabilities is investigated. Two cases are considered, in which opposing walls undergo either uniform or non-uniform motion. In the first case,the homotopy analysis method (HAM) is used. to obtain the expressions for the velocity and micro-rotation fields. Graphs are sketched for some parameters. The results show that the expansion ratio and the different permeabilities have important effects on the dynamic characteristics of the fluid. Following Xu's model, in the second case which is more general, the wall expansion ratio varies with time. Under this assumption, the governing equations are transformed into nonlinear partial differential equations that can also be solved analytically by the HAM. In the process, both algebraic and exponential models are considered to describe the evolution of α(t) from the initial state α0 to the final state α1. As a result, the time-dependent solutions are found to approach the steady state very rapidly. The results show that the time-dependent variation of the wall expansion ratio can be ignored because of its limited effects. 相似文献
5.
The present paper investigates the steady flow of an Oldroyd-B fluid. The fluid flow is induced by an exponentially stretched surface. Suitable transformations reduce a system of nonlinear partial differential equations to a system of ordinary differential equations. Convergence of series solution is discussed explicitly by a homotopy analysis method (HAM). Velocity, temperature and heat transfer rates are examined for different involved parameters through graphs. It is revealed that for a larger retardation time constant, the velocity is enhanced and the temperature is lowered. It is noted that relaxation time constant and the Prandtl number enhance the heat transfer rate. 相似文献
6.
The magnetohydrodynamic(MHD) flow of the third grade fluid between two permeable disks with heat transfer is investigated.The governing partial differential equations are converted into the ordinary differential equations by suitable transformations.The transformed equations are solved by the homotopy analysis method(HAM).The expressions for square residual errors are defined,and the optimal values of convergencecontrol parameters are selected.The dimensionless velocity and temperature fields are examined for various dimensionless parameters.The skin friction coefficient and the Nusselt number are tabulated to analyze the effects of dimensionless parameters. 相似文献
7.
This research paper analyzes the transport of thermal and solutal energy in the Maxwell nanofluid flow induced above the disk which is rotating with a constant angular velocity.The significant features of thermal and solutal relaxation times of fluids are studied with a Cattaneo-Christov double diffusion theory rather than the classical Fourier’s and Fick’s laws.A novel idea of a Buongiorno nanofluid model together with the Cattaneo-Christov theory is introduced for the first time for the Maxwel... 相似文献
8.
A. MASTROBERARDINO 《应用数学和力学(英文版)》2013,34(9):1043-1054
The steady, laminar, incompressible flow and heat transfer of a viscous fluid between two circular cylinders for two different types of thermal boundary conditions are investigated. The governing Navier-Stokes and thermal equations of the flow are reduced to a nonlinear system of ordinary differential equations. The equations are solved analyt- ically using the homotopy analysis method (HAM). Convergence of the HAM solutions is discussed in detail. These solutions are then compared with recently obtained numericM and perturbative solutions. Plots of the velocity and temperature profiles are provided for various values of the relevant parameters. 相似文献
9.
梁的轴向运动会诱发其产生横向振动并可能导致屈曲失稳,对结构的安全性和可靠性产生重大的影响。本文重点研究了横向载荷作用下轴向运动梁的屈曲失稳及横向非线性振动特性。基于Hamilton变分原理,建立了横向载荷作用下轴向运动梁的动力学方程,获得了梁的后屈曲构型。使用截断Galerkin法,将控制方程改写成Duffing方程的形式。用同伦分析方法确定载荷作用下轴向运动梁的非线性受迫振动的封闭形式的表达式。结果表明,后屈曲构型对轴向速度和初始轴向应力有明显的依赖性。通过同伦分析法得出非线性基频的显式表达式,获得了初始轴向力会影响非线性频率随初始振幅和轴向速度的线性关系。另外,轴向外激励的方向也会改变系统固有频率。 相似文献
10.
This paper examines the unsteady two‐dimensional flow of a second‐grade fluid between parallel disks in the presence of an applied magnetic field. The continuity and momentum equations governing the unsteady two‐dimensional flow of a second‐grade fluid are reduced to a single differential equation through similarity transformations. The resulting differential system is computed by a homotopy analysis method. Graphical results are discussed for both suction and blowing cases. In addition, the derived results are compared with the homotopy perturbation solution in a viscous fluid (Math. Probl. Eng., DOI: 10.1155/2009/603916 ). Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
11.
This investigation examines the time dependent magnetohydrodynamic (MHD) flow problem of a micropolar fluid between two radially
stretching sheets. Both strong and weak concentrations of microelements are taken into account. Suitable transformations are
employed for the conversion of partial differential equations into ordinary differential equations. Solutions to the resulting
problems are developed with a homotopy analysis method (HAM). The angular velocity, skin friction coefficient, and wall couple
stress coefficient are illustrated for various parameters. 相似文献
12.
In this paper, we reconsider the problem of fully developed natural convection heat and mass transfer of a micropolar fluid in a vertical channel with asymmetric wall temperatures and concentrations. The resulting boundary‐value problem is solved analytically by the homotopy analysis method. The accuracy of the present solution is found to be in excellent agreement with the solutions of Cheng (Int. Commun. Heat Mass Transfer 2006; 33 :627–635). Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
13.
The present investigation derives the exact and series solutions for steady thin film flow of a third‐grade fluid. The series solution is constructed by a homotopy analysis method. The obtained solutions are compared and an excellent agreement between these is achieved. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
14.
The normal viscous force of squeeze flow between two arbitrary rigid spheres with an interstitial second-order fluid was studied for modeling wet granular materials using the discrete element method. Based on the Reynolds‘ lubrication theory, the small parameter method was introduced to approximately analyze velocity field and stress distribution between the two disks. Then a similar procedure was carried out for analyzing the normal interaction between two nearly touching, arbitrary rigid spheres to obtain the pressure distribution and the resulting squeeze force. It has been proved that the solutions can be reduced to the case of a Newtonian fluid when the non-Newtonian terms are neelected. 相似文献
15.
This paper is concerned with the flow of two immiscible fluids through a porous horizontal channel. The fluid in the upper region is the micropolar fluid/the Eringen fluid, and the fluid in the lower region is the Newtonian viscous fluid. The flow is driven by a constant pressure gradient. The presence of micropolar fluids introduces additional rotational parameters. Also, the porous material considered in both regions has two different permeabilities. A direct method is used to obtain the analytical solution of the concerned problem. In the present problem, the effects of the couple stress, the micropolarity parameter, the viscosity ratio, and the permeability on the velocity profile and the microrotational velocity are discussed. It is found that all the physical parameters play an important role in controlling the translational velocity profile and the microrotational velocity. In addition, numerical values of the different flow parameters are computed. The effects of the different flow parameters on the flow rate and the wall shear stress are also discussed graphically. 相似文献
16.
S. CHAND 《应用数学和力学(英文版)》2013,34(3):309-326
The triple-diffusive convection in a micropolar ferromagnetic fluid layer heated and soluted from below is considered in the presence of a transverse uniform magnetic field. An exact solution is obtained for a flat fluid layer contained between two free boundaries. A linear stability analysis and a normal mode analysis method are carried out to study the onset convection. For stationary convection, various parameters such as the medium permeability, the solute gradients, the non-buoyancy magnetization, and the micropolar parameters (i.e., the coupling parameter, the spin diffusion parameter, and the micropolar heat conduction parameter) are analyzed. The critical magnetic thermal Rayleigh number for the onset of instability is determined numerically for a sufficiently large value of the buoyancy magnetization parameter M 1. The principle of exchange of stabilities is found to be true for the micropolar fluid heated from below in the absence of the micropolar viscous effect, the microinertia, and the solute gradients. The micropolar viscous effect, the microinertia, and the solute gradient introduce oscillatory modes, which are non-existent in their absence. Sufficient conditions for the non-existence of overstability are also obtained. 相似文献
17.
The cases of large Reynolds number and small expansion ratio for the asym- metric laminar flow through a two-dimensional porous expanding channel are considered. The Navier-Stokes equations are reduced to a nonlinear fourth-order ordinary differential equation by introducing a time and space similar transformation. A singular perturbation method is used for the large suction Reynolds case to obtain an asymptotic solution by matching outer and inner solutions. For the case of small expansion ratios, we are able to obtain asymptotic solutions by double parameter expansion in either a small Reynolds number or a small asymmetric parameter. The asymptotic solutions indicate that the Reynolds number and expansion ratio play an important role in the flow behavior. Nu- merical methods are also designed to confirm the correctness of the present asymptotic solutions. 相似文献
18.
In this paper, the three-dimensional nanofluid bio-convection near a stagnation attachment is studied. With a set of similarity variables, the governing equations embodying the conservation of total mass, momentum, thermal energy, nanoparticles and microorganisms are reduced to a set of fully coupled nonlinear differential equations. The homotopy analysis method (HAM)-finite difference method (FDM) technique is used to obtain exact solutions. The effect of various physical parameters on distribution of the motile microorganisms and the important physical quantities of practical interests are presented and discussed. 相似文献
19.
S. Nadeem Anwar Hussain 《应用数学和力学(英文版)》2009,30(12):1569-1578
The present paper investigates the magnetohydrodynamic(MHD) flow of a viscous fluid towards a nonlinear porous shrinking sheet.The governing equations are simplified by similarity transformations.The reduced problem is then solved by the homotopy analysis method.The pertinent parameters appearing in the problem are discussed graphically and presented in tables.It is found that the shrinking solutions exist in the presence of MHD.It is also observed from the tables that the solutions for f(0) with different values of parameters are convergent. 相似文献
20.
H. A. Attia 《Journal of Applied Mechanics and Technical Physics》2005,46(1):68-76
An unsteady flow and heat transfer to an infinite porous disk rotating in a Reiner—Rivlin non-Newtonian fluid are considered. The effect of the non-Newtonian fluid characteristics and injection (suction) through the disk surface on velocity and temperature distributions and heat transfer is considered. Numerical solutions are obtained over the entire range of the governing parameters.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 1, pp. 85–95, January–February, 2005. 相似文献