首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
This paper describes microcontact printing (muCP) of long-chain alkanethiolates on palladium, followed by solution-phase etching with an iron(III)-based etchant, to make patterned structures. The commonly used soft-lithographic procedure for fabricating microstructures-muCP of SAMs on gold-has three shortcomings: a significant surface density of pinhole defects, substantial edge roughness, and incompatibility with processes used in CMOS fabrication. Microcontact printing on palladium gives fewer defects and smaller edge roughness than on gold, and is compatible with CMOS. The mechanism by which etch-resistant patterns are formed is different for palladium and gold. The Pd/S interfacial layer formed by the reaction of palladium films with sulfur-containing compounds provides good resistance to etches independently of the barrier to access the surface provided by the film of (CH2)n groups in the long-chain SAMs. This barrier is the basis of the etch resistance of SAMs on gold, but only supplements the etch resistance of the sulfur-containing interfacial layer on palladium. Characterization of the SAM formed from hexadecanethiol on palladium is described.  相似文献   

2.
Trinkle CA  Lee LP 《Lab on a chip》2011,11(3):455-459
Microcontact printing (μCP) is a rapid, inexpensive way to create microscale chemical or biochemical patterns on a target surface. This microstamping method can be used to selectively modify a wide array of surface properties, from wettability and protein adsorption to chemical etch susceptibility. However, controlling the absolute location of features created with microcontact printing is difficult; this lack of precision makes it challenging to integrate with other microfabrication methods or to create complex, multi-chemical patterns on a single surface. In this research, we demonstrate a novel method of controlling the placement of microcontact printing stamps by using an integrated kinematic coupling device. This technique relies on mechanical reference points for rapid, optics-free registry of the stamp and allows μCP stamps to be quickly removed and replaced or even exchanged with submicron repeatability.  相似文献   

3.
A moderately hydrophilic, thermoplastic elastomer (poly(ether-ester)) was investigated as a stamp material for microcontact printing of a polar ink: pentaerythritol-tetrakis-(3-mercaptopropionate). Stamps with a relief structure were produced from this polymer by hot embossing, and a comparison was made with conventional poly(dimethylsiloxane) (PDMS) and oxygen-plasma-treated PDMS. It is shown that the hydrophilic stamps can be used for the repetitive printing (without re-inking) of at least 10 consecutive patterns, which preserve their etch resistance, and this in rather sharp contrast to conventional and oxygen plasma-treated PDMS stamps. It is argued that these enhanced printing characteristics of the hydrophilic stamps originate from an improved wetting and solubility of polar inks in the hydrophilic stamp.  相似文献   

4.
Different methods to create chemically patterned, flat PDMS stamps with two different chemical functionalities were compared. The best method for making such stamps, functionalized with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFDTS) and 3-(aminopropyl)triethoxysilane (APTS), appeared to be full functionalization of a freshly oxidized flat PDMS stamp with either adsorbate, followed by renewed oxidation through a mask and attachment of the other adsorbate. These stamps were used to transfer polar inks (a thioether-functionalized dendrimer and a fluorescent dye) by microcontact printing. The PFDTS monolayer was used as a barrier against ink transfer, while the APTS SAM areas functioned as an ink reservoir for polar inks. The printing results confirmed the excellent transfer of hydrophilic inks with these stamps to gold and glass substrates, even from aqueous solutions. Attachment of a fluorescent dye on the amino-functionalized regions shows the possibility of the further modification of the chemically patterned stamps for tailoring of the stamps' properties.  相似文献   

5.
Patterned polymer brushes can be prepared by a novel strategy that combines surface‐initiated polymerization and microcontact printing (see picture; μCP SAM indicates the self‐assembled monolayer formed by microcontact printing). The living nature of the polymerization process permits the thickness of the polymer brush and its physical properties to be accurately controlled.  相似文献   

6.
We describe a straightforward approach to the covalent immobilization of cytophilic proteins by microcontact printing, which can be used to pattern cells on substrates. Cytophilic proteins are printed in micropatterns on reactive self-assembled monolayers by using imine chemistry. An aldehyde-terminated monolayer on glass or on gold was obtained by the reaction between an amino-terminated monolayer and terephthaldialdehyde. The aldehyde monolayer was employed as a substrate for the direct microcontact printing of bioengineered, collagen-like proteins by using an oxidized poly(dimethylsiloxane) (PDMS) stamp. After immobilization of the proteins into adhesive "islands", the remaining areas were blocked with amino-poly(ethylene glycol), which forms a layer that is resistant to cell adhesion. Human malignant carcinoma (HeLa) cells were seeded and incubated onto the patterned substrate. It was found that these cells adhere to and spread selectively on the protein islands, and avoid the poly(ethylene glycol) (PEG) zones. These findings illustrate the importance of microcontact printing as a method for positioning proteins at surfaces and demonstrate the scope of controlled surface chemistry to direct cell adhesion.  相似文献   

7.
The soft lithographic replication of patterns with a low filling ratio by microcontact printing (microCP) is problematic due to the poor mechanical stability of common elastomeric stamps. A recently described strategy to avoid this problem employs a modified patterning method, positive microcontact printing ((+)microCP), in which a stamp with a mechanically more stable inverted relief pattern is used. In contrast to conventional negative microCP ((-)microCP), in the contact areas a self-assembled monolayer (SAM) is printed of a "positive ink", which provides only minor etch protection, whereas the noncontacted areas are subsequently covered with a different, etch-resistant SAM, prior to development by chemical etching. With the aim to identify novel, highly versatile positive inks, the patterning of gold by (+)microCP with mercaptoalkyloligo(ethylene glycol)s (MAOEGs), the subsequent adsorption of octadecanethiol (ODT), and the final development by wet chemical etching have now been studied. A polydisperse mixture of mercaptoundecylocta(ethylene glycol) derivatives was found to provide the best patterning results. The surface spreading of the positive ink during stamping, the exchange of printed MAOEGs with ODT, and the choice of the right etching bath were identified as key parameters that influence the achievable pattern resolution and contrast. Due to the modular composition of functionalized alkyloligo(ethylene glycol) derivatives, (+)microCP with these positive inks has the potential for easy adaptation to a variety of materials and development conditions.  相似文献   

8.
Locally oxidized patterns on flat poly(dimethylsiloxane) stamps for microcontact printing were used as a platform for the transfer of a hydrophilic fluorescent ink to a glass substrate. The contrast was found to be limited. These locally oxidized patterns were conversely used as barriers for the transfer of hydrophobic n-octadecanethiol. In this case a good contrast was obtained, but the pattern was found to be susceptible to defects (cracks) in the barrier layer. Local stamp surface oxidation and subsequent modification with 1H,1H,2H,2H-perfluorodecyltrichlorosilane, for use as a barrier in the transfer of n-octadecanethiol, 16-mercaptohexadecanoic acid, and octanethiol, resulted in remarkably good contrast and stable patterns. The improved ink transfer control is ascribed to the reduction of undesired surface spreading and a superior mechanical stability of the stamp pattern. This new approach substantially expands the applicability of microcontact printing and provides a tool for the faithful reproduction of even extremely low filling ratio patterns.  相似文献   

9.
利用去湿现象制备图案化的离子刻蚀聚合物保护层   总被引:3,自引:0,他引:3  
微米和纳米尺度的图案化表面的制备在微电子、光学、生物、化学和材料科学等领域具有重要的科学意义和应用价值 [1~ 3 ] .由于需要复杂昂贵的设备和苛刻的工作环境 ,光刻技术难以广泛应用于微电子以外的领域 ,因此 ,发展简单、便宜、适用于普通实验室 (尤其是化学实验室 )的表面图案化技术已成为一个涉及众多学科领域的课题 .在近年来不断涌现出来的物理、化学和生物的表面图案化技术 [4~ 6]中 ,最具代表性的是由 Whitesides等 [7]发明的以表面具有微观图案的聚二甲基硅氧烷 (PDMS)弹性体作为模具或印章的软光刻技术 .结合溶胶 -凝胶、…  相似文献   

10.
《Supramolecular Science》1997,4(1-2):141-146
Self-assembled monolayers (SAMs) on surfaces may be used as molecular templates for the selective deposition of polymer multilayer films. SAMs of ω-functionalized alkane thiolates are patterned onto gold surfaces with micron scale features using the microcontact printing method; glass substrates can also be patterned with trichloroalkylsilane SAMs. Patterned polymeric monolayer and multilayer films are adsorbed atop the SAM from dilute polymer solutions using ionic macromolecular self-assembly techniques which have been developed recently. The effects of polymer molecular weight and ionic content, as well as the use of a second SAM in the unpatterned regions to promote selectivity are discussed. Surface roughness, selectivity and other film properties are presented. It is demonstrated that this technique can be used successfully in the patterning of micron scale features with multilayers of low molecular weight upon adsorption from dilute solution.  相似文献   

11.
Poly(propylene imine) dendrimers with dialkyl sulfide end groups were prepared and developed as inks for positive microcontact printing ((+)muCP) on gold. Long (C10H21-S-C10H20-), medium (C3H7-S-C4H8-), and short (CH3-S-CH2-) dialkyl sulfide end groups were attached to second- and third-generation PPI dendrimers to create a family of dendritic sulfides. The dendritic inks flatten upon adsorption and form monolayers on gold. (+)muCP was performed on gold using commercially available poly(dimethylsiloxane) as stamp material and n-octadecanethiol as etch resist. The gold beneath the dendrimers was selectively etched away with an acidic Fe(NO3)3/thiourea solution to give the positive copy of the original master pattern. The multivalent sulfide attachment and the relatively high molecular mass of these dendrimers ensured minimal lateral ink spreading and thus optimal feature reproducibility. Contact times were varied to analyze the spreading rates of the dendritic inks. The spreading rates of the dendritic inks were found to be much lower than that of pentaerythritol tetrakis(3-mercaptopropionate). (+)muCP with the new inks was extended to submicrometer features. Optical microscopy, scanning electron microscopy, and atomic force microscopy were used to characterize the etched samples. Lines with a width of 100 nm were faithfully replicated with the third-generation dendrimers bearing medium (C3-S-C4-) end groups.  相似文献   

12.
We have demonstrated microcontact printing (muCP) of self-assembled monolayers in the millisecond regime. The contact formation and separation of the stamp and substrate was studied with high-speed video recordings. Using high ink concentrations and contact times as short as 1 ms, we printed monolayers of hexadecanethiol on Au, which served as a selective etch resist. High-speed muCP yields defect-free monolayers that are independent of the dimensions of the printed patterns, have high contrast between printed and unprinted areas, and enable perfect reproducibility of prints.  相似文献   

13.
Patterned monolayers of N‐heterocyclic carbenes (NHCs) on gold surfaces were obtained by microcontact printing of NHC–CO2 adducts and NHC(H)[HCO3] salts. The NHC‐modified areas showed an increased conductivity compared to unmodified gold surface areas. Furthermore, the remaining surface areas could be modified with a second, azide‐functionalized carbene, facilitating further applications and post‐printing modifications. Thorough elucidation by a variety of analytical methods offers comprehensive evidence for the viability of the methodology reported here. The protocol enables facile access to versatile, microstructured NHC‐modified gold surfaces with highly stable patterns, enhanced conductivity, and the option for further modification.  相似文献   

14.
We report on a versatile nanocolloidal route to obtain large-scale conducting metal microstructures on a silicon oxide substrate. By using microcontact printing of an aminosilane, we create functionalized regions on the silicon oxide surface onto which gold nanoparticles selectively adhere. By using an established electroless, seeded-growth process, the individual, isolated gold nanocrystals are enlarged past the percolation threshold to form conducting metal structures. Quantitative characterization of metal coverage, thickness, and roughness has been performed with scanning electron microscopy and spectroscopic ellipsometry.  相似文献   

15.
A technique for microcontact printing of thiols in liquid media is presented. Elastomeric poly(dimethyl siloxane) stamps are used to pattern gold surfaces with thiol-based self-assembled monolayers. The liquid (water in this case) has been used as an incompressible support and, advantageously, also acts as a medium in which alkylthiol ink molecules are poorly miscible. Consequently, we have been able to produce patterned thiol monolayers using stamps with aspect ratios unsuitable for conventional microcontact printing (i.e., 15:1) and present evidence to suggest that it is possible to use stamps with aspect ratios of up to 100:1.  相似文献   

16.
Microcontact printing is a heavily used surface modification method in materials and life science applications. This concept article focuses on the development of versatile stamps for microcontact printing that can be used to bind and release inks through molecular recognition or through an ink reservoir, the latter being used for the transfer of heavy inks, such as biomolecules and particles. Conceptually, such stamp properties can be introduced at the stamp surface or by changing the bulk stamp material; both lines of research will be reviewed here. Examples include supramolecular stamps with affinity properties, polymer‐layer‐grafted PDMS stamps, and porous multilayer‐grafted PDMS stamps for the first case, and hydrogel stamps and porous stamps made by phase‐separation micromolding for the second. Potential directions for future advancement of this field are also discussed.  相似文献   

17.
We describe a method to exploit the mass-transfer limitations of microcontact printing for the fabrication of surfaces with well-defined, arbitrarily shaped composition variations. An analysis of the transport processes reveals that the printing of hexadecanethiol (HDT) from poly(dimethylsiloxane) is purely diffusion-controlled. Stamps with geometries that enhance surface-normal diffusion paths therefore allow not only the contours, but also the local density of self-assembled monolayers to be controlled. We use stamps with variable thickness and uniform ink concentration to print HDT density gradients on gold, depleting the stamps during the process. In the second step, a perfluorinated thiol fills the vacancies in the partial monolayer to form a two-component gradient that we analyze by means of X-ray photoelectron spectroscopy and spectroscopic ellipsometry. Linear and radial gradients are shown here as examples for a wide range of geometries that can be fabricated with high precision using the method.  相似文献   

18.
We report on a novel lithography-free method for obtaining chemical submicron patterns of macromolecules on flat substrates. The approach is an advancement of the well-known microcontact printing scheme: While for classical microcontact printing lithographically produced masters are needed, we show that controlled wrinkling can serve as an alternative pathway to producing such masters. These can even show submicron periodicities. We expect upscaling to larger areas to be considerably simpler than that for existing techniques, as wrinkling results in a macroscopic deformation process that is not limited in terms of substrate size. Using this approach, we demonstrate successful printing of aqueous solutions of polyelectrolytes and proteins. We study the effectiveness of the stamping process and its limits in terms of periodicities and heights of the stamps' topographical features. We find that critical wavelengths are well below 355 nm and critical amplitudes are below 40 nm and clarify the failure mechanism in this regime. This will permit further optimization of the approach in the future.  相似文献   

19.
The possibility of using a novel comb polymer consisting of a chitosan backbone with grafted 44 units long poly(ethylene oxide) side chains for reducing nonspecific protein adsorption to gold surfaces functionalized by COOH-terminated thiols has been explored. The comb polymer was attached to the surface in three different ways: by solution adsorption, covalent coupling, and microcontact printing. The protein repellent properties were tested by monitoring the adsorption of bovine serum albumin and fibrinogen employing surface plasmon resonance and imaging null ellipsometry. It was found that a significant reduction in protein adsorption is achieved as the comb polymer layer is sufficiently dense. For solution adsorption this was achieved by adsorption from high pH solutions. On the other hand, the best performance of the microcontact printed surfaces was obtained when the stamp was inked either at low or at high pH. For a given comb polymer layer thickness/poly(ethylene oxide) density, significant differences in protein repellent properties were observed between the different preparation methods, and it is suggested that a reduction in the mobility of the comb polymer layer generated by covalent attachment favors a reduced protein adsorption.  相似文献   

20.
In this paper, we report the microelectrode array fabrication using selective wetting/dewetting of polymers on a chemical pattern which is a simple and convenient method capable of creating negative polymeric replicas using polyethylene glycol (PEG) as a clean and nontoxic sacrificial layer. The fabricated hole-patterned polypropylene film on gold demonstrated enhanced electrochemical properties. The chemical pattern is fabricated by microcontact printing using octadecanethiol (ODT) as an ink on gold substrate. When PEG is spin-cast on the chemical pattern, PEG solution selectively dewets the ODT patterned areas and wets the remaining bare gold areas, leading to the formation of arrayed PEG dots. A negative replicas of the PEG dot array is obtained by spin-coating of polypropylene (PP) solution in hexane which preferentially interacts with the hydrophobic ODT region on the patterned gold surface. The arrayed PEG dots are not affected the during PP spin-coating step because of their intrinsic immiscibility. Consequently, the hole-patterned PP film is obtained after PEG removal. The electrochemical signal of the PP film demonstrates the negligible leakage current by high dielectric and self-healing of defects on the chemical pattern by the polymer. This method is applicable to fabrication of microelectrode arrays and possibly can be employed to fabricate a variety of functional polymeric structures, such as photomasks, arrays of biomolecules, cell arrays, and arrays of nanomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号