首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A biosensor was investigated based on the use of ZrO2 sol-gel matrix for enzyme immobilization in the mild condition. This bioceramic zirconia alcogel has been prepared by the novel alcohothermal route with a cheap inorganic salt Zr(NO3)4·5H2O with several desirable features including a large surface area (about 460 m2 g−1) as well as pore volume and a well-developed textural mesoporosity, and horseradish peroxidase was selected as a model enzyme. The results of transmission electron microscopy (TEM) and BET measurement of the substrate showed that the as-prepared zirconia matrix has an advantageous microenvironment and large surface area available for high enzyme loading. The parameters affecting both the entrapment of enzyme and the biosensor response were optimized. The resulting biosensor exhibited high sensitivity of 111 μA mM−1 for hydrogen peroxide over a wide range of concentrations from 2.5×10−7 to 1.5×10−4 mol l−1, quick response of less than 10 s and good stability over 3 months.  相似文献   

2.
Biosensors can be developed using different biological materials and immobilization technologies. Enzymes are generally used in biosensor construction, and some enzymes need metal ions or small organic molecules as a cofactor for their activation. Polyphenol oxidases can be activated by several metal ions such as Cu2+, Mg2+, Zn2+, Mn2+, and Ni2+. In this study, a new measurement method has been developed that is based on the metal ion activation of the polyphenol oxidase enzyme used in the biosensor preparation, especially to determine the concentration of Mg2+ ions. Polyphenol oxidase (PPO) (EC 1.10.3.1) was partially purified from potato (Solanum tuberosum) by using (NH4)2SO4 precipitation, dialysis, and lyophylization processes. As a result of this processes, approximately 30-fold purification was achieved for PPO. For construction of the biosensor, the enzyme was immobilized on the dissolved oxygen probe membrane using gelatin and glutaraldehyde (2.5%). Using the biosensor, we obtained responses for catechol in the absence and presence of Mg2+ ions. Differences between the biosensor responses were related to the concentration of Mg2+ ions. The biosensor response depends linearly on concentration of Mg2+ ions between 0.05 and 7.5?mM. In the optimization studies, phosphate buffer (pH 7.0, 50?mM) and 35°C were determined to be the optimum conditions. This project will be a novel biosensor study and it might bring a new term, ‘activation based biosensor’ into the biosensor area.  相似文献   

3.
《Analytical letters》2012,45(7-8):1310-1316
An electrochemical biosensor to detect biogenic amines in saliva was developed. This biosensor is based on a Prussian Blue screen-printed electrode, which senses the H2O2 produced by the reaction catalyzed by the diamine oxidase enzyme. The probe was connected with a portable instrument and chronoamperometric drop measurements were performed. After evaluation of the biosensor's ability to interact with different amines, putrescine was chosen as the reference amine. A detection limit of 1 × 10?5 M and a working range between 2 × 10?5 and 3 × 10?4 M were obtained. Once optimized, the saliva treatment, a negligible matrix effect, and an average recovery of 105% were obtained.  相似文献   

4.
Biosensors for malic acid and glucose have been developed, using screen-printed electrodes and two different classes of enzymes: NAD(P)+-dependent dehydrogenases and oxidases. The active surface of the electrodes was modified using Meldola Blue (malic acid) and Prussian Blue (glucose) and in this way sensitive, low cost and reliable NAD(P)H and H2O2 probes were obtained. Fixed potential amperometry was used for the detection of substrates in small volumes of sample (50 μl). Immobilization of the enzymes in a polyethylenimine-glutaraldehyde cross-linking membrane allowed sensors to be obtained with sufficient operational stability. The detection limits were of 10−5 M for malic acid and 10−6 M for glucose. The sensors were applied in the analysis of different samples of wine.  相似文献   

5.
Mesoporous MnO2 (mesoMnO2) is synthesized facilely through sol–gel process using nonionic surfactant polyxyethylene fatty alcohol (AEO9) as template. Transmission electron microscopy (TEM) image and N2 adsorption/desorption isotherm show that the obtained mesoMnO2 material presents disordered porous structure and appropriate pore size suitable for the immobilization of glucose oxidase (GOx). An amperometric glucose biosensor based on GOx entrapped in mesoMnO2 is fabricated, in which mesoMnO2 also acts as a catalyst for the electrochemical oxidation of H2O2 produced by enzyme reaction. The biosensor shows fast and sensitive current response to glucose in the linear range of 0.0009–2.73 mM. The response time (t95%) is less than 7 s. The sensitivity and detection limit are 24.2 μA cm−2 mM−1 and 1.8 × 10−7 M (S/N = 3), respectively. This indicates that mesoMnO2 has promising application in enzyme immobilization and biosensor construction.  相似文献   

6.
Metal promoted zirconia-based oxide sorbents, such as Pt–ZrO2/Al2O3 for NO x have been investigated. To clarify the role of the catalyst component, sorption of NO and NO2 was compared using the samples with and without Pt. The catalytic oxidation of NO to NO2 and successively to nitrate ions is an important role for the Pt catalyst. The experimental results indicate that a high-temperature calcination is essential to remove residual Cl from Pt–ZrO2–Al2O3 prepared from H2PtCl6 in order to provide more active NO x sorption sites. Of M–ZrO2–Al2O3 samples investigated, ruthenium as well as Pt demonstrated relatively good performance as a catalyst component in the sorbent. The FT-IR spectra after sorption of NO and NO2 demonstrated a strong band attributed to stored nitrate ions. The Pt catalyst was more resistant to sulfur poisoning than a base metal catalyst. However, the NO x sorptive capacities of the Pt–ZrO2/Al2O3 sorbents were expected to be deteriorated in dilute SO2 as far as observed from FT-IR spectra.  相似文献   

7.
Very sensitive, low cost and reliable NADH and H2O2 sensors were realised and used for development of enzyme based biosensors. The active surface of the electrodes was modified with a nanocomposite obtained by modification of SWNT with a proper mediator: Meldola Blue (for NADH) and Prussian Blue (for H2O2). Low applied potential of − 50 mV vs. Ag/AgCl reference electrode proved the synergistic effect of nanocomposite materials towards NADH and H2O2 detection. Biosensors for malic acid and alkylphenols have been developed, using mediator-functionalised-SWNT-based electrodes and two different classes of enzymes: NAD+-dependent dehydrogenases and peroxidases. Immobilization of the enzymes was realised using a series of different procedures — adsorption, Nafion membrane, sol–gel and glutaraldehyde, in order to find the best configuration for a good operational stability. A higher sensitivity comparing with other reported biosensors of about 12.41 mA/M·cm2 was obtained for l-malic acid biosensor with enzyme immobilised in Nafion membrane. Phenol, 4-t-octylphenol and 4-n-nonylphenol were used as standard compounds for HRP based biosensor. Fast biosensor response and comparable detection limit with HPLC methods were achieved.  相似文献   

8.
Abstract

In this review, the structural data of monomeric platinum(II) complexes with inner coordination spheres of Pt(η2-P2L)(SiL)2, Pt(η2-P2L)(η2-Si2L) and Pt(η2-P,SiL)2 are classified and analyzed. These complexes crystallize in three crystal systems: monoclinic (8 examples), triclinic (4 examples) and orthorhombic (4 examples). Distorted square-planar environments about the Pt(II) atoms are built up by combination of homobi-P,P with two monodentate Si donor ligands; homobi-PP with homo-Si,Si donor ligands, or heterobi-P,Si donor ligands. The chelating ligands create metallacycles with the following angles: 65.0° (SiOSi) < 83.1° (SiC2Si) < 85.2° (PC2P) < 88.8° (SiSi2Si)). The mean Pt-P and Pt-Si bond distances in Pt(η2-P2L)·(SiL)2 complexes are 2.319 and 2.365?Å; in Pt(η2-P2L)(η2-Si2L) the values are 2.316 and 2.360?Å. The complex [Pt{η2-Me2P(C2B10H10)SiMe2}2] exists in two isomeric forms, a monoclinic cis- and a triclinic trans-isomer. The structural data are compared and discussed with the complexes of inner coordination spheres: Pt(η2-P2L)(XL)2 (X?=?O, N, CN, BL, Cl, SL, SeL, Br, or I) and Pt(η2-P2L)(η2-X2L) (X?=?OL, NL, SL or SeL).  相似文献   

9.
《Electroanalysis》2003,15(3):175-182
Three different kinds of glassy carbon (GC‐R, GC‐K, GC‐G) were equally pretreated, further modified with electrochemically deposited Prussian Blue and used as sensors for hydrogen peroxide at an applied potential of ?50 mV (vs. Ag|AgCl). Their performance was evaluated with respect to the following parameters: the coverage and electrochemistry of the electrodeposited Prussian Blue, the sensitivity and the lower limit of detection for hydrogen peroxide, and the operational stability of the sensors. GC‐R showed the best behavior concerning the surface coverage and the operational stability of the electrodeposited Prussian Blue. For this electrode the sensitivity for hydrogen peroxide (10 μM) was 0.25 A/M cm2 and the detection limit was 0.1 μM. Scanning electron microscopy was used to study the surfaces of the three electrodes before and after the electrodeposition of Prussian Blue and to search for the reason for the three different behaviors between the different glassy carbon materials. The Prussian Blue modified GC‐R was also used for the construction of a glucose biosensor based on immobilizing glucose oxidase in Nafion membranes on top of electrodeposited Prussian Blue layer. The operational stability of the glucose biosensors was studied in the flow injection mode at an applied potential of ?50 mV (vs. Ag|AgCl) and alternatively injecting standard solutions of hydrogen peroxide (10 μM) and glucose (1 mM) for 3 h. For the GC‐R based biosensor a 2.8% decrease of the initial glucose response was observed.  相似文献   

10.
In this work, an amine-terminated poly (amidoamine) dendrimer containing Pt nanoparticles (PAMAM/Pt) nanocomposite was synthesized and a novel amperometric H(2)O(2) biosensor based on PAMAM/Pt and MWCNTs was developed. The resulting film of MWCNTs/PAMAM/Pt was characterized by transmission electron microscopy (TEM), linear sweep voltammetry (LSV) and amperometric i-t curve. It demonstrates excellent electrocatalytic responses toward the reduction of H(2)O(2) at -200 mV (vs.SCE) without HRP participation. Immobilized with glutamate oxidase (GlutaOx), an effective glutamate biosensor, was fabricated, and the in vivo detection for glutamate was realized combining with the on-line microdialysis system. The glutamate biosensor showed good linear range from 1.0 μM to 50.0 μM with the detection limit of 0.5 μM (S/N=3). The basal level of glutamate in the striatum of rat was detected continuously with this on-line system and was calculated to be 5.80±0.12 μM (n=3). This method was proved to be sensitive and selective and may be feasible in the further application of physiology and pathology.  相似文献   

11.
《Electroanalysis》2003,15(12):1031-1037
A cholesterol biosensors fabricated by immobilization of cholesterol oxidase (ChOx) in a layer of silicic sol‐gel matrix on the top of a Prussian Blue‐modified glassy carbon electrode was prepared. It is based on the detection of hydrogen peroxide produced by ChOx at ?0.05 V. The half‐lifetime of the biosensor is about 35 days. Cholesterol can be determined in the concentration range of 1×10?6?8×10?5 mol/L with a detection limit of 1.2×10?7 mol/L. Normal interfering compounds, such as ascorbic acid and uric acid do not affect the determination. The high sensitivity and outstanding selectivity are attributed to the Prussian Blue film modified on the sensor.  相似文献   

12.
Qian L  Yang X 《Talanta》2006,68(3):721-727
A new amperometric biosensor for hydrogen peroxide was developed based on cross-linking horseradish peroxidase (HRP) by glutaraldehyde with multiwall carbon nanotubes/chitosan (MWNTs/chitosan) composite film coated on a glassy carbon electrode. MWNTs were firstly dissolved in a chitosan solution. Then the morphology of MWNTs/chitosan composite film was characterized by field-emission scanning electron microscopy. The results showed that MWNTs were well soluble in chitosan and robust films could be formed on the surface. HRP was cross-linked by glutaraldehyde with MWNTs/chitosan film to prepare a hydrogen peroxide biosensor. The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for H2O2 in the absence of a mediator. The linear range of detection towards H2O2 (applied potential: −0.2 V) was from 1.67 × 10−5 to 7.40 × 10−4 M with correction coefficient of 0.998. The biosensor had good repeatability and stability for the determination of H2O2. There were no interferences from ascorbic acid, glucose, citrate acid and lactic acid.  相似文献   

13.
A copper containing Prussian Blue analogue was incorporated into a conducting polypyrrole film. The modified electrode was synthesized through an electrochemical two-step methodology leading to very stable and homogeneous hybrid films. These electrodes were proved to show excellent catalytic properties towards H2O2 detection, with a performance higher than those observed for Prussian Blue and other analogues. Electrochemical impedance spectroscopy experiments demonstrated that the excellent performance of these hybrid films is strongly related to the electronic conductivity of the polymeric matrix that is wiring the copper hexacyanoferrate sites. A glucose biosensor was built-up by the immobilization of glucose oxidase; the sensitivity obtained being higher than other biosensors reported in the literature even in Na+ containing electrolytes.  相似文献   

14.
通过一定体积比的CdS和普鲁士蓝(PB)胶体纳米溶液的简单混合,制备了PB/CdS纳米复合物。在共反应剂存在条件下,PB纳米粒子含量较低时,在ITO电极上CdS纳晶的电致化学发光(ECL)强度可以增强3倍左右。PB纳米粒子含量较高时,CdS纳晶的ECL强度则显著降低。详细讨论了PB纳米粒子对CdS纳晶ECL影响的机理。PB纳米粒子对CdS纳晶的ECL增强可用于H2O2传感。该传感器对H2O2响应的线性范围为3.3×10-8~6.5×10-3 mol.L-1(R=0.999 2),检测限为12 nmol.L-1(S/N=3),传感器具有良好的稳定性和重现性。  相似文献   

15.
In this research a Hg2+ ion biosensor was developed by combining Prussian blue (PB) with glucose oxidase (GOx) – an enzyme that can be inhibited by Hg2+ ions. An application of PB in the design of Hg2+ ion biosensor enabled detecting changes in hydrogen peroxide reduction current at low operational potential of 0.2 vs Ag|AgCl,KClsat. The described Hg2+ ion biosensor exhibited wide linear range from 27 μM to 247 μM of Hg2+ and higher maximal detectable concentration of Hg2+ than other GOx inhibition-based biosensors, making it convenient for the analysis of samples with high concentration of Hg2+ ions.  相似文献   

16.
The 195Pt-NMR chemical shifts of all possible hydrolysis products of [PtCl6]2? in acidic and alkaline aqueous solutions are calculated employing simple non-relativistic density functional theory computational protocols. Particularly, the GIAO-PBE0/SARC-ZORA(Pt) ∪ 6-31 + G(d)(E) computational protocol augmented with the universal continuum solvation model (SMD) performs the best for calculation of the 195Pt-NMR chemical shifts of the Pt(IV) complexes existing in acidic and alkaline aqueous solutions of [PtCl6]2?. Excellent linear plots of δcalcd(195Pt) chemical shifts versus δexptl(195Pt) chemical shifts and δcalcd(195Pt) versus the natural atomic charge QPt are obtained. Very small changes in the Pt–Cl and Pt–O bond distances of the octahedral [PtCl6]2?, [Pt(OH)6]2?, and [Pt(OH2)6]4+ complexes have significant influence on the computed σiso 195Pt magnetic shielding tensor elements of the anionic [PtCl6]2? and the computed δ 195Pt chemical shifts of [Pt(OH)6]2? and [Pt(OH2)6]4+. An increase of the Pt–Cl and Pt–O bond distances by 0.001 Å (1 mÅ) is accompanied by a downfield shift increment of 17.0, 19.4, and 37.6 ppm mÅ?1, respectively. Counter-anion effects in the case of the highly positive charged complexes drastically improve the accuracy of the calculated 195Pt chemical shifts providing values very close to the experimental ones.  相似文献   

17.
TiO2-graphene nanocomposite was prepared by hydrolysis of titanium isopropoxide in colloidal suspension of graphene oxide and in situ hydrothermal treatment. The direct electrochemistry and electrocatalysis of hemoglobin in room temperature ionic liquid 1-Butyl-3-methylimidazolium hexafluorophosphate, chitosan and TiO2-graphene nanocomposite modified glassy carbon electrode were investigated. The biosensor was examined by using UV-vis spectroscopy, scanning electron microscopy and electrochemical methods. The results indicated that hemoglobin remained its bioactivity on the modified electrode, showing a couple of well-defined and quasi-reversible redox peaks, corresponding to hemoglobin FeIII/FeII couple. The kinetic parameters for the electrode reaction, such as the formal potential (Eo'), the electron transfer rate constant (ks), the apparent coverage (Γ), and Michaelis–Menten constant (Km) were evaluated. The biosensor showed good electrochemical responses to the reduction of H2O2 in the ranges of 1–1170 μM. The detection limit was 0.3 μM (S/N = 3). The properties of this composite film, together with the bioelectrochemical catalytic activity, could make them useful in the development of bioelectronic devices, and investigation of electrochemistry of other heme proteins at functional interface.  相似文献   

18.
The protonic acid sites are formed from hydrogen molecules on Pt/SO4 2--ZrO2 , and the resulting protonic acid sites act as active sites for acid-catalyzed reactions. Promotion of molecular hydrogen on the activities is observed not only for the Pt/SO4 2--ZrO2, but also for the other catalysts such as a physical mixture of Pt/SiO2 and H-ZSM5, and Co.Mo/SiO2-/Al2O3 . A molecular hydrogen-originated protonic acid site is proposed as a widely applicable concept for an active site on solid acid catalysts.  相似文献   

19.
The glucose sensitivity and oxygen dependence of a variety of implantable biosensors based on glucose oxidase (GOx), incorporating an electrosynthesized poly-o-phenylenediamine (PPD) permselective barrier on 125-μm diameter Pt disks (PtD) and cylinders (PtC, 1-mm length), were measured and compared. Full glucose calibrations and experimental monitoring of solution oxygen concentration allowed us to determine apparent Michaelis–Menten parameters for glucose and oxygen. In the linear region of glucose response, the most sensitive biosensor design studied was PtD/PPD/GOx (enzyme deposited over polymer) that was 20 times more sensitive than the more widely used PtC/GOx/PPD (enzyme immobilized before polymer deposition) configuration. The oxygen dependence, quantified as KM(O2), of both active and less active designs was surprisingly similar, a finding that could be rationalized in terms of an increase in KM(G) with increased enzyme loading. The PtD/PPD/GOx design will now enable us to explore glucose concentration dynamics in smaller and layered brain regions with good sensitivity and minimal interference from fluctuations in tissue pO2.  相似文献   

20.
Yongjin Zou  Lixian Sun  Fen Xu 《Talanta》2007,72(2):437-442
A Prussian Blue (PB)/polyaniline (PANI)/multi-walled carbon nanotubes (MWNTs) composite film was fabricated by step-by-step electrodeposition on glassy carbon electrode (GCE). The electrode prepared exhibits enhanced electrocatalytic behavior and good stability for detection of H2O2 at an applied potential of 0.0 V. The effects of MWNTs thickness, electrodeposition time of PANI and rotating rate on the current response of the composite modified electrode toward H2O2 were optimized to obtain the maximal sensitivity. A linear range from 8 × 10−9 to 5 × 10−6 M for H2O2 detection has been observed at the PB/PANI/MWNTs modified GCE with a correlation coefficient of 0.997. The detection limit is 5 × 10−9 M on signal-to-noise ratio of 3. To the best of our knowledge, this is the lowest detection limit for H2O2 detection. The electrode also shows high sensitivity (526.43 μA μM−1 cm−2) for H2O2 detection which is more than three orders of magnitude higher than the reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号