首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of contaminants, such as phosphate, in biodiesel, has several drawbacks for instance: current engines perform poorly, fuel tanks deteriorate, catalytic conversion is damaged, and particles emission is increased. Therefore, biodiesel quality control is extremely important for biodiesel acceptance and commercialization worldwide. In this context, a bare glassy carbon electrode (GCE) and another chemically modified electrode with iron hexacyanoferrate (Prussian Blue – PB) were developed for determination of phosphate in biodiesel. The LODs of 6.44 and 1.19 mg kg?1, and LOQs of 21.43 and 3.97 mg kg?1 were obtained for the bare GCE and the PB‐modified GCE, respectively. The methodology was employed for analysis of Brazilian biodiesel samples, and it led to satisfactory results, demonstrating its potential application for biodiesel quality control. Additionally, recovery and interference tests were conducted, which revealed that the developed methods are suitable for analysis of phosphate in biodiesel samples.  相似文献   

2.
An ion mobility spectrometer (IMS) probe system for real-time, subsurface soil-gas sampling applications is presented. The system includes an IMS and supporting electronics encased in a 51 mm diameter stainless steel probe housing. The IMS was challenged in the laboratory with 2,6-di-tert-butylpyridine (DtBP) and tetrachloroethylene (PCE) in zero air yielding reduced ion mobility constants (Ko) values of 1.42 cm2/Vs (n = 3) and 1.79 ± 0.01 cm2/Vs (n = 3), respectively. A resolving power of 38 and 31 was obtained for DtBP and PCE, respectively. The system was deployed at a PCE-contaminated site to demonstrate its performance under field conditions. PCE was detected in the vapor samples as evidenced by peaks with a Ko value of 1.80 ± 0.01 cm2/Vs for two measurements that were taken 6 min apart. The presence of PCE at the contaminated site was confirmed by GC-MS analysis of a gas sample at an EPA-certified laboratory, suggesting that this IMS system can be used to detect PCE under field conditions.  相似文献   

3.
The use of isotope ratio infrared spectroscopy (IRIS) for the stable hydrogen and oxygen isotope analysis of water is increasing. While IRIS has many advantages over traditional isotope ratio mass spectrometry (IRMS), it may also be prone to errors that do not impact upon IRMS analyses. Of particular concern is the potential for contaminants in the water sample to interfere with the spectroscopy, thus leading to erroneous stable isotope data. Water extracted from plant and soil samples may often contain organic contaminants. The extent to which contaminants may interfere with IRIS and thus impact upon data quality is presently unknown. We tested the performance of IRIS relative to IRMS for water extracted from 11 plant species and one organic soil horizon. IRIS deviated considerably from IRMS for over half of the samples tested, with deviations as large as 46‰ (δ2H) and 15.4‰ (δ18O) being measured. This effect was reduced somewhat by using activated charcoal to remove organics from the water; however, deviations as large as 35‰ (δ2H) and 11.8‰ (δ18O) were still measured for these cleaned samples. Interestingly, the use of activated charcoal to clean water samples had less effect than previously thought for IRMS analyses. Our data show that extreme caution is required when using IRIS to analyse water samples that may contain organic contaminants. We suggest that the development of new cleaning techniques for removing organic contaminants together with instrument‐based software to flag potentially problematic samples are necessary to ensure accurate plant and soil water analyses using IRIS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Thiram fungicide contamination in canola seeds, water and soil samples was monitored using headspace solid-phase microextraction (HS-SPME) combined with ion mobility spectrometer (IMS) to assess its environmental relevance. The influence of the various analytical parameters on microextraction procedure including pH, ionic strength, equilibrium time and temperature has been evaluated and optimised. HS-SPME-IMS allowed the determination of thiram in the concentration range of 10–300 ng mL?1 (R2 > 0.99). The detection limit and relative standard deviation were 6 ng mL?1 and 8% for five replicate analyses, respectively. The HS-SPME-IMS method with polypyrrole film doped with dodecylsulfate (PPy-DS) as solid phase provided an effective sample clean-up for the monitoring of thiram in canola and soil samples. The main advantages of this method are sensitive, good repeatability, organic solvent-free, less time-consuming and relatively inexpensive.  相似文献   

5.
Ion mobility spectrometry (IMS) gains increased pharmaceutical interest as an analytical technique for the verification of equipment cleaning. Using a fractional factorial design, we developed an IMS method for talarozole, which represents a new generation of retinoic acid metabolism blocking agents (RAMBA) that can be used for the treatment of different dermatological diseases, such as psoriasis and acne. Using a Smiths Detection Ionscan-LS and the optimal IMS settings obtained, talarozole showed a drift time of 16.648 ms, corresponding to a reduced ion mobility K0 of 1.072 cm²V?1s?1. Total analysis times below 1 min were achieved. Talarozole was well separated in the plasmagram from other azole compounds and the limit of detection was found to be 43 ng/ml. Swab samples collected from steel and glass plates were successfully analyzed, thereby showing that IMS is indeed a suitable technique for the quantitative analysis of talarozole in cleaning quality control.  相似文献   

6.
Trace analysis enables the sensitive detection of radionuclide concentrations in ground-level air in the range of microbecquerel per cubic meter (Bq m–3). Typical sampling intervals of less than one day up to a few days can be used in routine operation. Trace analysis measurements are performed in the framework of the German Integrated Measuring and Information system (IMIS) and the International Monitoring System (IMS) used for verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Within the environmental monitoring programmes of the German IMIS the Federal Office for Radiation Protection (BfS) performs measurements of aerosol-bound radionuclides and of radioactive noble gases in the atmosphere. Aerosols are collected on filters with high-volume air samplers and analysed by -spectrometry, -spectrometry, and integral measurements of -activity, with preceding radiochemical separation. Noble gas samples from 15 sites world-wide are analysed to observe the 85Kr-release from nuclear fuel reprocessing plants and from seven sites in Germany to monitor the 133Xe emitted from nuclear power plants. As part of the International Monitoring System (IMS) of the CTBT an automatic aerosol sampling and measuring system and an automatic noble gas sampling and measuring system will be operated by the BfS at Mount Schauinsland near Freiburg. Because of its expertise in noble gas measurements the BfS had been chosen to perform an intercomparison experiment in the BfS laboratory in Freiburg with several automatic noble gas sampling and measurement systems before their installation at IMS sites. To establish quality-assurance programmes for trace analysis performed for the German IMIS close collaboration between the involved German institutions has been established. First steps have been taken to expand cooperation to other European laboratories. Informal data exchange already occurs between trace-analysis laboratories in Europe (Ring of Five) and helps in cases of enhanced activity concentrations to get a rapid overview of the radiological situation and to identify possible sources.  相似文献   

7.
Membrane-introduction mass spectrometry (MIMS) for chemical analysis involves directly sampling analytes in gaseous, liquid and solid samples through a semi-permeable membrane coupled to a mass spectrometer, yielding selective and sensitive quantitation. Because MIMS is an on-line technique, in which samples can be continuously flowed over a membrane interface, it can yield analytical results in real time without the need for sample clean-up and chromatographic separation. This review highlights trends and developments in MIMS over the past decade and describes recent studies that pertain to its use for on-site, in-situ and in-vivo chemical analysis. We report on advancements in instrumentation, including membrane materials, interface configurations and ionization techniques that have extended the range of analytes amenable to MIMS.We summarize the progress made in the miniaturization of mass spectrometers that have resulted in field-portable systems and review recent applications of continuous mobile monitoring and on-site environmental monitoring to yield both temporally and spatially resolved quantitative and semi-quantitative data. Finally, we describe recent work involving the use of MIMS for in-vivo chemical analysis.  相似文献   

8.
Several recent intercomparisons and certification exercises have shown that the determination of tin in e.g. food samples and plastics is not straightforward. k 0-Instrumental Neutron Activation Analysis (k 0-INAA) offers some intrinsic quality control opportunities for the determination of the tin content in samples since several monitoring radioisotopes are formed. In this work we will discuss the validation of the determination of tin by k 0-INAA using different reference materials. The results show that only few of these radioisotopes are reliable in terms of accuracy and that from a survey of the tin content in a range of canned foods detection limits as low as 2 mg/kg can be achieved.  相似文献   

9.
The use of hybrid quadrupole ion mobility spectrometry time‐of‐flight mass spectrometry (Q/IMS/TOFMS) in the metabolite profiling of leflunomide (LEF) and acetaminophen (APAP) is presented. The IMS drift times (Td) of the drugs and their metabolites were determined in the IMS/TOFMS experiments and correlated with their exact monoisotopic masses and other in silico generated structural properties, such as connolly molecular area (CMA), connolly solvent‐excluded volume (CSEV), principal moments of inertia along the X, Y and Z Cartesian coordinates (MI‐X, MI‐Y and MI‐Z), inverse mobility and collision cross‐section (CCS). The correlation of Td with these parameters is presented and discussed. IMS/TOF tandem mass spectrometry experiments (MS2 and MS3) were successfully performed on the N‐acetyl‐p‐benzoquinoneimine glutathione (NAPQI‐GSH) adduct derived from the in vitro microsomal metabolism of APAP. As comparison, similar experiments were also performed using hybrid triple quadrupole linear ion trap mass spectrometry (QTRAPMS) and quadrupole time‐of‐flight mass spectrometry (QTOFMS). The abilities to resolve the product ions of the metabolite within the drift tube and fragment the ion mobility resolved product ions in the transfer travelling wave‐enabled stacked ring ion guide (TWIG) demonstrated the potential applicability of the Q/IMS/TOFMS technique in pharmaceutical metabolite profiling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The presence of a wide variety of organic pollutants with different physicochemical characteristics has been investigated in wastewater samples from a municipal solid-waste-treatment plant in Castellón, Spain. An advanced analytical strategy was applied—combined used of two powerful and complementary techniques, GC and LC, both hyphenated with tandem mass spectrometry with triple-quadrupole analyzers. The GC–MS–MS method was based on sample extraction using C18 SPE cartridges and enabled the determination of approximately 60 compounds from different chemical families, for example PAHs, octyl/nonylphenols, PCBs, organochlorine compounds, insecticides, herbicides, and PBDEs. Most of the compounds selected are included as priority contaminants in the European Union (EU) Water Directive. The UHPLC–MS–MS method, which provided high chromatographic resolution and sensitivity and short analysis time, used sample extraction with Oasis HLB SPE cartridges and enabled the determination of 37 (more polar) pesticides. The methodology developed was applied to the analysis of 41 water samples (20 untreated raw leachates and 21 treated samples) collected between March 2007 and February 2009. Amounts of the contaminants investigated rarely exceeded 0.5 μg L−1 in the treated (reverse osmosis) water samples analyzed. As expected, in untreated leachates the number of compounds detected and the concentrations found were notably higher than in treated waters. The most commonly detected pollutants were herbicides (simazine, terbuthylazine, terbutryn, terbumeton, terbacil, and diuron), fungicides (thiabendazole and carbendazim), and 4-t-octylphenol. The results obtained proved that use of reverse osmosis for water treatment was efficient and notably reduced the amounts of organic contaminants found in raw leachate samples. In order to investigate the presence of other non-target contaminants, water samples were also analyzed by using GC–TOF MS and LC–QTOF MS. Several organic pollutants that did not form a part of the previous list of target contaminants were identified in the samples, because of the high sensitivity of TOF MS in full-spectrum acquisition mode and the valuable accurate-mass information provided by these instruments. The insecticide diazinon, the fungicide diphenylamide, the UV filter benzophenone, N-butylbenzenesulfonamide (N-BBSA), the insect repellent diethyltoluamide, caffeine, and the pharmaceuticals erythromycin, benzenesulfonanilide, ibuprofen, atenolol, and paracetamol were some of the compounds identified in the water samples analyzed.  相似文献   

11.
The determination of 241Am in the environment is of importance in monitoring its release and assessing its environmental impact and radiological risk. This paper aims to give an overview about the recent developments and the state-of-art analytical methods for 241Am determination in environmental samples. Thorough discussions are given in this paper covering a wide range of aspects, including sample pre-treatment and pre-concentration methods, chemical separation techniques, source preparation, radiometric and mass spectrometric measurement techniques, speciation analyses, and tracer applications. The paper focuses on some hyphenated separation methods based on different chromatographic resins, which have been developed to achieve high analytical efficiency and sample throughput for the determination of 241Am. The performances of different radiometric and mass spectrometric measurement techniques for 241Am are evaluated and compared. Tracer applications of 241Am in the environment, including speciation analyses of 241Am, and applications in nuclear forensics are also discussed.  相似文献   

12.
Determination of natural radioactivity in Euphrates river   总被引:1,自引:0,他引:1  
Levels of naturally occuring radionuclides (radium isotopes, U isotopes, 210Po and 210Pb) in water, sediments and biota samples collected from Euphrates river during the 1999–2000 period have been determined. Results have shown that the water contained relatively high levels of 226Ra; the largest value of 1150 mBq·l–1 was observed. These relatively high levels of 226Ra, which is one of the main radioactive contaminants in the oil industry, may be due to past discharges of production water from the oil fields situated near the river banks. 226Ra/238U activity ratio was found to be more than unity in all water samples varying between 13 and 242. In addition, the results of sediment analyses have also shown lower values for 228Ra/226Ra activity ratio than unity in those samples collected nearby the oil fields. Moreover, concentrations of other naturally occurring radionuclides such as uranium isotopes, 210Po and 210Pb for most samples (water, sediments and biota) were found to be within the natural levels and in agreement with those values reported for other local and international studies. Only mussel species were found to contain high levels of 210Po, about 1335 Bq·kg–1 dry mass was observed in Anodonta sp species. However, the results of this study can be considered a baseline for monitoring of future changes. A regional research project (including Turkey, Syria and Iraq) to study this river (from the Anatolia Mountains to the Arabian Gulf) is necessary to determine the impact of all potential sources of contaminants.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

13.
龙耀庭  郭岩 《分析化学》1997,25(1):97-103
近年来离子淌度谱(IMS)在样品引入技术,信号采集和数据处理、离子源等方面都有了显著的进展,其中以IMS作为色谱检测器(IMD)进行的研究尤为重要,而IMS与J民喷雾郭子化(ESI)技术的联用扩大其在非挥发性化合物和生物物质检测方面的应用评论还综述了近年来IMS应用于环保、化学化工、违禁药物检测、爆炸物检测以及半导体表面挥发物分析等方面的最新研究成果。  相似文献   

14.
Bacterial cold water disease, caused by Flavobacterium psychrophilum, is a serious problem in the aquaculture industry worldwide. Several methods to prevent and treat cold water disease have been studied. Although detection at the early stage of F. psychrophilum infection is very important for the prevention and treatment of cold water disease, an effective detection method has not yet been developed. The use of flow cytometry (FCM) for the rapid determination of bacterial cell numbers with high sensitivity is beginning to attract attention. Immunomagnetic separation (IMS) has also been used to detect F. psychrophilum. The purpose of the present study was to develop a method to quickly determine the number of bacterial cells by combining the FCM and IMS methods. Because samples can be more effectively concentrated using smaller magnetic beads and stronger magnetism, we used carbonyl iron powder as the magnetic beads for the IMS. The detection level of F. psychrophilum using FCM combined with IMS was 5 orders lower than that using FCM without IMS. The values determined using FCM combined with IMS strongly correlated with those obtained using the colony-counting method, in the range of approximately 10–108 colony-forming units per milliliter. One FCM assay could be completed within 60 s and the total assay time, including sample preparation, was less than 2 h. The combined method of FCM with IMS developed in this study can be used reliably for the rapid detection of F. psychrophilum.  相似文献   

15.
The leakage of sulphur hexafluoride (SF6) gas threats the global climate changes and personnel safety. Monitoring the concentration of SF6 in its application places is an industry regulation. In this study, ion mobility spectrometry (IMS) was developed for fast monitoring traces of SF6 in near-source ambient air. Due to the water is an important part of the natural air and affects most atmospheric measurements, the operating parameters of IMS monitoring SF6 were optimised for quantitative analysis of SF6 at different relative humidity (RH). It is discovered two main product ions SF6? and SOF4? by IMS at different RH. The calibration curves of SF6 were investigated by its relationship with the peak intensity of SOF4 for real application. The time resolution of the measurement was obtained less than 1 s and the limit of detection (LOD) achieved 0.16–0.68 ppm with a data averaging of 30 times. At last, the simulated application of monitoring SF6 leakage was tested in the fume hood of our lab. The results showed a great potential application prospect of IMS in monitoring SF6 in the ambient air of its application places.  相似文献   

16.
A novel sampling device suitable for continuous, unattended field monitoring of rapid isotopic changes in environmental waters is described. The device utilises diffusion through porous PTFE tubing to deliver water vapour continuously from a liquid water source for analysis of δ18O and δD values by Cavity Ring‐Down Spectrometry (CRDS). Separation of the analysed water vapour from non‐volatile dissolved and particulate contaminants in the liquid sample minimises spectral interferences associated with CRDS analyses of many aqueous samples. Comparison of isotopic data for a range of water samples analysed by Diffusion Sampling‐CRDS (DS‐CRDS) and Isotope Ratio Mass Spectrometry (IRMS) shows significant linear correlations between the two methods allowing for accurate standardisation of DS‐CRDS data. The internal precision for an integration period of 3 min (standard deviation (SD) = 0.1 ‰ and 0.3 ‰ for δ18O and δD values, respectively) is similar to analysis of water by CRDS using an autosampler to inject and evaporate discrete water samples. The isotopic effects of variable air temperature, water vapour concentration, water pumping rate and dissolved organic content were found to be either negligible or correctable by analysis of water standards. The DS‐CRDS system was used to analyse the O and H isotope composition in short‐lived rain events. Other applications where finely time resolved water isotope data may be of benefit include recharge/discharge in groundwater/river systems and infiltration‐related changes in cave drip water. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A new approach of siloxane sampling based on impinger, micro-impinger, adsorption on active carbon, and direct TedlarBag methods followed by gas chromatography-mass spectrometry (GC-MS) was developed for the analysis of three linear (L2–L4) and four cyclic (D3–D5) volatile methyl siloxanes (VMSs). Three kinds of organic liquid-medium characterized by different polarities, namely acetone, methanol, and d-decane as siloxanes trap were arranged in the experiment which is widely discussed below. Thus, the GC-MS equipped with SUPELCOWAX-10 capillary column was employed to perform monitoring of VMS content in the analyzed biogas samples originating from landfill, wastewater treatment plants, and agriculture biogas plants. In all samples that have undergone the analysis, cyclic and linear VMSs were found in quantities exceeding 107.9 and 3.8 mg/m3, respectively. Significant differences between siloxanes concentrations depending on biogas origin were observed. Moreover, the high range of linearity (0.1 to 70.06 mg/m3), low LoD (0.01 mg/m3), low LoQ (0.04 mg/m3), and high recovery (244.1%) indicate that the procedure and can be applied in sensitive analyses of silica biogas contaminants. In addition to the above, the impinger method of sampling performed better than active-carbon Tube and TedlarBag, particularly for quantifying low concentrations of siloxanes. Overall, the evaluation of sampling methods for biogas collection simplified the analytical procedure by reducing the procedural steps, avoiding the use of solvents, as well as demonstrated its applicability for the testing of biogas quality.  相似文献   

18.
The sources of contamination introduced during the extraction, distillation and drying phases of isotope-ratio analysis of soil inorganic nitrogen (ammonium and nitrite + nitrate) were identified, and the individual amounts of contaminants were quantified by isotope dilution. The procedure involves addition of internal standard solutions of 15N-labelled ammonium and nitrite to reagent blanks which are carried through each stage of the analysis at the same time as the test samples. Potassium chloride extractants, filter-papers, distillation reagents and atmospheric ammonia all contributed to dilution of the sample 15N. Some materials tested contained sufficient contaminants to cause large errors in the determination of sample 15N abundance. Both the amount and isotopic composition of contaminants can be determined by the isotope-dilution procedure, which permits the measured sample 15N abundance to be corrected for contamination.  相似文献   

19.
Process analysis using ion mobility spectrometry   总被引:7,自引:0,他引:7  
Ion mobility spectrometry, originally used to detect chemical warfare agents, explosives and illegal drugs, is now frequently applied in the field of process analytics. The method combines both high sensitivity (detection limits down to the ng to pg per liter and ppbv/pptv ranges) and relatively low technical expenditure with a high-speed data acquisition. In this paper, the working principles of IMS are summarized with respect to the advantages and disadvantages of the technique. Different ionization techniques, sample introduction methods and preseparation methods are considered. Proven applications of different types of ion mobility spectrometer (IMS) used at ISAS will be discussed in detail: monitoring of gas insulated substations, contamination in water, odoration of natural gas, human breath composition and metabolites of bacteria. The example applications discussed relate to purity (gas insulated substations), ecology (contamination of water resources), plants and person safety (odoration of natural gas), food quality control (molds and bacteria) and human health (breath analysis).  相似文献   

20.
Quantitative imaging mass spectrometry (q-IMS) is a frontier topic of research in drug analysis. Although many q-IMS methodologies have been reported, validation of the method is insufficient. We have investigated the feasibility of coupling q-IMS with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to develop a verifiable method. The approach combines quantitative LC-MS/MS information with the spatial distribution information obtained by IMS. This paper compares measured drug quantities with those estimated using IMS. The target drug, erlotinib, is a tyrosine kinase inhibitor of non-small-cell lung cancer. The quantitative accuracy of our q-IMS method in an animal model study is approximately 17%. Measurements were conducted on mouse liver and brain tissues before and after erlotinib administration. Erlotinib is delivered to the brain, although the concentration is 104 times smaller than that found in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号