首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The intense colors of noble metal nanoparticles have inspired artists and fascinated scientists for hundreds of years. In this review, we describe refractive index sensing platforms based on the tunability of the localized surface plasmon resonance (LSPR) of arrays of silver nanoparticles and of single nanoparticles. Specifically, the color associated with single nanoparticles and surface-confined nanoparticle arrays will be shown to be tunable and useful as platforms for chemical and biological sensing. Finally, the LSPR nanosensor will be compared to traditional, flat surface, propagating surface plasmon resonance sensors.  相似文献   

2.
This work reports the systematic preparation of biosensors through the use of functionalized glass substrates, noble metal gold colloid, and measurement by localized surface plasmon resonance (LSPR). Glass substrate was modified through chemical silanization, and the density of gold colloid was carefully controlled by optimizing the conditions of silanization through the use of mixed silanes and selective mixing procedures. At this point, samples were exposed to bioreagents and changes in the shallow dielectric constant around the particles were observed by dark-field spectroscopy. Biological binding of high affinity systems (biotin/streptavidin and antigen/antibody) was subsequently investigated by optimizing coating layers, receptor concentration profiling, and finally quantitative determination of the analyte of interest, which in this case was a small organic molecule—the widely used, synthetic anabolic steroid called stanozolol. For this system, high specificity was achieved (>97%) through extensive nonspecific binding tests, with a sensitivity measurable to a level below the minimum required performance level (MRPL) as determined by standard chromatographic methods. Analytical best-fit parameters of Hillslope and regression coefficient are also commented on for the final LSPR biosensor. The LSPR biosensor showed good reproducibility (<5% RSD) and allowed for rapid preparation of calibration curves and determination of the analyte (measurement time of each sample ca. 2 min). As an alternative method for quantitative steroidal analysis, this approach significantly simplifies the detection setup while reducing the cost of analysis. In addition the system maintains comparable sensitivity to standard surface plasmon resonance methods and offers great potential for miniaturization and development of multiplexed devices. Figure Schematic of sensor configuration indicating both min and max controls and associatedexample localized resonance curves Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
An enhanced sensitive biosensor has been developed to detect biological targets by tailoring the localized surface plasmon resonance property of core–shell gold nanorods. In this new concept, a shell layer is produced on gold nanorods by generating a layer of chalcogenide on the gold nanorod surface after attachment of the recognition reagent, namely, goat IgG and antigen of schistosomiasis japonica. The bioactivity of these attached biomolecules is retained and the sensitivity of this biosensor is thus enhanced significantly. The plasmonic properties of the gold nanorods attached with the biomolecules can be adjusted and the plasmon resonance wavelength can be red-shifted up to several hundred nanometers in the visible or near infrared (NIR) region, which is extremely important to biosensing applications. This leads to a lager red-shift in the localized surface plasmon resonance absorption compared to the original gold nanorod-based sensor and hence offers greatly enhanced sensitivity in the detection of schistosomiasis japonica. The human serum infected with schistosomiasis japonica diluted to 1:50,000 (volume ratio, serum/buffer solution) can be detected readily. The technique offers enhanced sensitivity and can be easily extended to other sensing applications based on not only immuno-recognition but also other types of specific reactions.  相似文献   

4.
Biosensors based on surface plasmon resonance (SPR) have become a central tool for the investigation and quantification of biomolecules and their interactions. Nucleic acids (NAs) play a vital role in numerous biological processes and therefore have been one of the major groups of biomolecules targeted by the SPR biosensors. This paper discusses the advances of NA SPR biosensor technology and reviews its applications both in the research of molecular interactions involving NAs (NA–NA, NA–protein, NA–small molecule), as well as for the field of bioanalytics in the areas of food safety, medical diagnosis and environmental monitoring.  相似文献   

5.
Surface plasmon resonance (SPR) is a powerful and versatile spectroscopic method for biomolecular interaction analysis (BIA) and has been well reviewed in previous years. This updated 2006 review of SPR, SPR spectroscopy, and SPR imaging explores cutting-edge technology with a focus on material, method, and instrument development. A number of recent SPR developments and interesting applications for bioanalysis are provided. Three focus topics are discussed in more detail to exemplify recent progress. They include surface plasmon fluorescence spectroscopy, nanoscale glassification of SPR substrates, and enzymatic amplification in SPR imaging. Through these examples it is clear to us that the development of SPR-based methods continues to grow, while the applications continue to diversify. Major trends appear to be present in the development of combined techniques, use of new materials, and development of new methodologies. Together, these works constitute a major thrust that could eventually make SPR a common tool for surface interaction analysis and biosensing. The future outlook for SPR and SPR-associated BIA studies, in our opinion, is very bright. Surface plasmon resonance (SPR) is a powerful and versatile spectroscopic method for biomolecular interaction analysis (BIA) and has been well reviewed in previous years. This updated 2006 review of SPR, SPR spectroscopy, and SPR imaging explores cutting-edge technology with a focus on material, method, and instrument development. A number of recent SPR developments and interesting applications for bioanalysis are provided. Three focus topics are discussed in more detail to exemplify recent progress. They include surface plasmon fluorescence spectroscopy, nanoscale glassification of SPR substrates, and enzymatic amplification in SPR imaging. Through these examples it is clear to us that the development of SPR-based methods continues to grow, while the applications continue to diversify. Major trends appear to be present in the development of combined techniques, use of new materials, and development of new methodologies. Together, these works constitute a major thrust that could eventually make SPR a common tool for surface interaction analysis and biosensing. The future outlook for SPR and SPR-associated BIA studies, in our opinion, is very bright.   相似文献   

6.
Plasmonic noble metal nanostructures have been targeted due to their strong surface plasmon resonance at photoelectrochemical interfaces. Recently, it has been concluded that, the plasmonic noble metal nanostructures on photoexcitation permit the transfer of effective hot carriers (hot electron/hole pair) to nearby adsorbed molecules where, the transformed hot carriers can efficiently decrease the activation barrier of a reaction. In this review, our recent achievements in the plasmon-mediated chemical reactions of organic molecules such as para-aminothiophenol, substituted para-aminothiophenol and para-nitrothiophenol at nanostructures modified noble metal electrodes using surface enhanced Raman spectroscopy, electrochemical methods, and theoretical calculations will be discussed.  相似文献   

7.
A surface plasmon resonance (SPR) sensor integrating a small sensor probe, a laser emission diode, a photo detector, and a polarizer was developed as a portable sensing device. The sensor probe was made with a glass cylinder, 50 mm long and 1.5 mm in diameter, that was connected directly to a beam splitter without optical fibers. The SPR spectrum obtained with this probe system showed a 10% reflectivity minimum at 690 nm. Shifts of the SPR spectrum induced by refractive index (RI) changes in the sample were measured by detecting the reflection light intensity at 670 nm. When the sensitivity was compared using a BIAcore™ SPR instrument, the lowest sensor response of 1 mV observed with the SPR probe system coincided with 1.4 × 10−6 of the RI changes. The RI resolution of the SPR probe was estimated with experimentally evaluated noise on the signal, and, consequently, it was concluded that the RI resolution was 1.2 × 10−5. Moreover, immunoreaction was demonstrated with adsorbed bovine serum albumin (BSA) and anti-BSA antibody as an analyte. As a result, 50 ng mL−1 of the lower detection limit was estimated.  相似文献   

8.
Present and future of surface plasmon resonance biosensors   总被引:22,自引:0,他引:22  
Surface plasmon resonance (SPR) biosensors are optical sensors exploiting special electromagnetic waves—surface plasmon-polaritons—to probe interactions between an analyte in solution and a biomolecular recognition element immobilized on the SPR sensor surface. Major application areas include detection of biological analytes and analysis of biomolecular interactions where SPR biosensors provide benefits of label-free real-time analytical technology. This paper reviews fundamentals of SPR affinity biosensors and discusses recent advances in development and applications of SPR biosensors.  相似文献   

9.
An indirect inhibitive surface plasmon resonance (SPR) immunoassay was developed for the microcystins (MCs) detection. The bioconjugate of MC-LR and bovine serum albumin (BSA) was immobilized on a CM5 sensor chip. A serial premixture of MC-LR standards (or samples) and monoclonal antibody (mAb) were injected over the functional sensor surface, and the subsequent specific immunoreaction was monitored on the BIAcore 3000 biosensor and generated a signal with an increasing intensity in response to the decreasing MCs concentration. The developed SPR immunoassay has a wide quantitative range in 1-100 μg L−1. Although not as sensitive as conventional enzyme-linked immunosorbent assay (ELISA), the SPR biosensor offered unique advantages: (1) the sensor chip could be reusable without any significant loss in its binding activity after 50 assay-regeneration cycles, (2) one single assay could be accomplished in 50 min (including 30-min preincubation and 20-min BIAcore analysis), and (3) this method did not require multiple steps. The SPR biosensor was also used to detect MCs in environmental samples, and the results compared well with those obtained by ELISA. We conclude that the SPR biosensor offers outstanding advantages for the MCs detection and may be further developed as a field-portable sensor for real-time monitoring of MCs on site in the near future.  相似文献   

10.
The sensitivity of surface plasmon resonance (SPR) transducers depends on the thickness and spatial organization of interfacial structures at their surfaces. This is because the response of the SPR sensor is determined by integrating the distance-dependent refractive index (spatial interfacial architectures), weighted by the square of the electromagnetic field, from zero to infinite distance. The effect of SPR transducer sensitivity variation on the accuracy of SPR analysis is considered. Our quantitative estimation (based on the results of refractometric studies) gave a value for sensitivity variation of about 3% for the formation of a self-assembled thiocyanate layer or a trypsin-soybean trypsin inhibitor surface complex. The estimated accuracy in measured variation (i.e., by 0.01) for the refractive index of the external medium was 3 × 10−4. This restriction, which follows immediately from the physical mechanism of the SPR phenomenon, should be taken into account when analyzing data obtained with the above technique.  相似文献   

11.
We report in this study the presence of Janus particles, which are candidates for use with electronic color papers. We used negatively charged polystyrene particles (370 nm) as the core particles, and gold was then sputtered onto their packed monolayer under several conditions. The sputtered particles were next redispersed into the aqueous medium by gentle sonication. Gold nanoparticles localized on one side of the cores could also serve as seeds for subsequent shell growth by electroless gold plating. Through these treatments, a series of well-dispersed Janus particles were obtained with gold nanostructures of different size and shape only on one side. Their dispersions showed different colors originating from the surface plasmon resonance absorption of gold nanoparticles localized on the hemisphere. The particles obtained by this approach have potential applications such as in sensors and electronic color paper.  相似文献   

12.
The immobilisation of biological recognition elements onto a sensor chip surface is a crucial step for the construction of biosensors. While some of the optical biosensors utilise silicon dioxide as the sensor surface, most of the biosensor surfaces are coated with metals for transduction of the signal. Biological recognition elements such as proteins can be adsorbed spontaneously on metal or silicon dioxide substrates but this may denature the molecule and can result in either activity reduction or loss. Self assembled monolayers (SAMs) provide an effective method to protect the biological recognition elements from the sensor surface, thereby providing ligand immobilisation that enables the repeated binding and regeneration cycles to be performed without losing the immobilised ligand, as well as additionally helping to minimise non-specific adsorption. Therefore, in this study different surface chemistries were constructed on SPR sensor chips to investigate protein and DNA immobilisation on Au surfaces. A cysteamine surface and 1%, 10% and 100% mercaptoundecanoic acid (MUDA) coatings with or without dendrimer modification were utilised to construct the various sensor surfaces used in this investigation. A higher response was obtained for NeutrAvidin immobilisation on dendrimer modified surfaces compared to MUDA and cysteamine layers, however, protein or DNA capture responses on the immobilised NeutrAvidin did not show a similar higher response when dendrimer modified surfaces were used.  相似文献   

13.
Paralytic shellfish poisoning (PSP) toxins are produced by certain marine dinoflagellates and may accumulate in bivalve molluscs through filter feeding. The Mouse Bioassay (MBA) is the internationally recognised reference method of analysis, but it is prone to technical difficulties and regarded with increasing disapproval due to ethical reasons. As such, alternative methods are required. A rapid surface plasmon resonance (SPR) biosensor inhibition assay was developed to detect PSP toxins in shellfish by employing a saxitoxin polyclonal antibody (R895). Using an assay developed for and validated on the Biacore Q biosensor system, this project focused on transferring the assay to a high-throughput, Biacore T100 biosensor in another laboratory. This was achieved using a prototype PSP toxin kit and recommended assay parameters based on the Biacore Q method. A monoclonal antibody (GT13A) was also assessed. Even though these two instruments are based on SPR principles, they vary widely in their mode of operation including differences in the integrated μ-fluidic cartridges, autosampler system, and sensor chip compatibilities. Shellfish samples (n = 60), extracted using a simple, rapid procedure, were analysed using each platform, and results were compared to AOAC high performance liquid chromatography (HPLC) and MBA methods. The overall agreement, based on statistical 2 × 2 comparison tables, between each method ranged from 85% to 94.4% using R895 and 77.8% to 100% using GT13A. The results demonstrated that the antibody based assays with high sensitivity and broad specificity to PSP toxins can be applied to different biosensor platforms.  相似文献   

14.
The development of a surface plasmon resonance (SPR) affinity biosensor based on DNA hybridisation is described. This biosensor has been applied to genetically modified organisms (GMOs) detection. Single stranded DNA (ssDNA) probes were immobilised on the sensor chip of an SPR device and the hybridisation between the immobilised probe and the complementary sequence (target) was monitored. The probe sequences were internal to the sequence of 35S promoter and NOS terminator which are inserted sequences in the genome of GMO regulating the transgene expression. The system has been optimised using synthetic oligonucleotides, then applied to real samples analysis. Samples, containing the transgenic target sequences, were amplified by polymerase chain reaction (PCR) and then detected with the SPR biosensor.  相似文献   

15.
The aim of this study was to develop an optical biosensor inhibition immunoassay, based on the surface plasmon resonance (SPR) principle, for use as a screening test for 13 (fluoro)quinolones, including flumequine, used as veterinary drugs in food-producing animals. For this, we immobilised various quinolone derivatives on the sensor chip and tested binding of a range of different antibodies (polyclonal and one engineered antibody) in the presence and absence of free (fluoro)quinolones. The main challenge was to detect flumequine in an assay giving good results for the other compounds. One antigen–antibody combination proved satisfactory: polyclonal antibodies raised against a dual immunogen and, on the sensor chip, a fluoroquinolone derivative. It was the first time that this concept of the bi-active antibody was described in the literature.The assay, optimised for detection in three matrices (poultry muscle, fish, and egg), was tested on incurred samples prepared by liquid extraction followed by two washing steps. This rapid, simple method proved adequate for detecting at least 13 (fluoro)quinolones at concentrations below established maximum residue levels (MRLs). The reference molecule norfloxacin could be detected in the range of 0.1–10 μg kg−1 in extracts of egg and poultry meat and in the range of 0.1–100 μg kg−1 in extracts of fish. The determined midpoints of these calibration curves were about 1, 1.5 and 3 μg kg−1 in poultry meat, egg and fish, respectively.  相似文献   

16.
In this paper, the development of a localized surface plasmon resonance (LSPR)-based optical enzyme biosensor using stimuli-responsive hydrogel-silver nanoparticles composite is described. This optical enzyme biosensor was constructed by immobilizing glucose oxidase (GOx) into the stimuli-responsive hydrogel. When a sample solution such as glucose was applied to the surface of this optical enzyme biosensor, the interparticle distances of the silver nanoparticles present in the stimuli-responsive hydrogel were increased, and thus the absorbance strength of the LSPR was decreased. Furthermore, hydrogen peroxide, which was produced by the enzymatic reaction, induced the degradation of highly clustered silver nanoparticles by the decomposition of hydrogen peroxide. Hence, a drastic LSPR absorbance change, which depends on the glucose concentrations, could be observed. On the basis of the abovementioned mechanism, the characterization of the LSPR-based optical enzyme biosensor was carried out. It was found that the LSPR-based optical enzyme biosensor could be used to specifically determine glucose concentrations. Furthermore, the detection limit of this biosensor was 10 pM. Therefore, this LSPR-based optical enzyme biosensor has the potential to be applied in cost-effective, highly simplified, and highly sensitive test kits for medical applications.  相似文献   

17.
LSPR from nanostructured noble metals such as gold and silver offers great potential for biosensing applications. In this study, a core-shell structured nanoparticle layer substrate was fabricated and the localized surface plasmon resonance (LSPR) optical characteristics were investigated for DNA in aqueous conditions. Factors such as DNA length dependence, concentration dependence, and the monitoring of DNA aspects (ssDNA or dsDNA) were measured. Different lengths and concentrations of DNA solutions were introduced onto the surface of the substrate and the changes in the LSPR optical characteristics were measured. In addition, to monitor the changes in LSPR optical characteristics for different DNA aspects, a DNA solutions denatured by means of heat or alkali were introduced onto the surface, after which optical characterization of the core-shell structured nanoparticle substrate was carried out. With this core-shell structured nanoparticle layer for the excitation of LSPR, the dependence upon specific DNA conditions (length, concentration, and aspect) could be monitored. In particular, the core-shell structured nanoparticle layer substrate could detect DNA of length 100-5000 bp and 400-bp DNA at a concentration of 4.08 ng mL−1 (1 × 107 DNA molecules mL−1). Furthermore, the changes in LSPR optical characteristics with DNA aspect could be monitored. Thus, LSPR-based optical detection using a core-shell structured nanoparticle layer substrate can be used to determine the kinetics of biomolecular interactions in a wide range of practical applications such as medicine, drug delivery, and food control.  相似文献   

18.
This article reports a surface plasmon resonance (SPR) strategy capable of label-free yet amplified in situ immunoassays for sensitive and specific detection of human IgG (hIgG), a serum marker that is important for the diagnosis of certain diseases. Primarily, a wavelength-modulated Kretschman configuration SPR analyzer was constructed, and Au film SPR biosensor chips were fabricated. Specifically, based on Au nanoparticles (AuNPs) adsorbed on the surface of the Au film, the AuNP/Au film was coated with polydopamine (PDA) to fix streptavidin (SA), and then the biotinylated antibodies were connected to the surface of the biosensor chip. The SPR analyzer was utilized for in situ real-time monitoring of hIgG. Due to the immunological recognition between the receptor and target, the surface plasmon waves produced by the attenuated total reflection were affected by the changes in the surface of the biosensor chip. The resonance wavelength (λR) of the output spectra gradually redshifted, and the redshift degrees were directly related to the target concentration. The biosensor can realize the in situ detection of hIgG, displaying satisfactory sensitivity, excellent specificity and stability. Briefly, by monitoring the shift in λR after specific binding, a new SPR immunoassay can be customized for label-free, in situ and amplified hIgG detection. The operating principle of this research could be extended as a common protocol for many other targets of interest.  相似文献   

19.
Surface-enhanced Raman scattering (SERS) enhancement and the reproducibility of the SERS signal strongly reflect the quality and nature of the SERS substrates because of diverse localized surface plasmon resonance (LSPR) excitations excited at interstitials or sharp edges. LSPR excitations are the most important ingredients for achieving huge enhancements in the SERS process. In this report, we introduce several gold and silver nanoparticle-based SERS-active substrates developed solely by us and use these substrates to investigate the influence of LSPR excitations on SERS. SERS-active gold substrates were fabricated by immobilizing colloidal gold nanoparticles on glass slides without using any surfactants or electrolytes, whereas most of the SERS-active substrates that use colloidal gold/silver nanoparticles are not free of surfactant. Isolated aggregates, chain-like elongated aggregates and two-dimensional (2D) nanostructures were found to consist mostly of monolayers rather than agglomerations. With reference to correlated LSPR and SERS, combined experiments were carried out on a single platform at the same spatial position. The isolated aggregates mostly show a broadened and shifted SPR peak, whereas a weak blue-shifted peak is observed near 430 nm in addition to broadened peaks centered at 635 and 720 nm in the red spectral region in the chain-like elongated aggregates. In the case of 2D nanostructures, several SPR peaks are observed in diverse frequency regions. The characteristics of LSPR and SERS for the same gold nanoaggregates lead to a good correlation between SPR and SERS images. The elongated gold nanostructures show a higher enhancement of the Raman signal than the the isolated and 2D samples. In the case of SERS-active silver substrates for protein detection, a new approach has been adopted, in contrast to the conventional fabrication method. Colloidal silver nanoparticles are immobilized on the protein functionalized glass slides, and further SERS measurements are carried out based on LSPR excitations. A new strategy for the detection of biomolecules, particularly glutathione, under aqueous conditions is proposed. Finally, supramolecular J-aggregates of ionic dyes incorporated with silver colloidal aggregates are characterized by SERS measurements and correlated to finite-difference time-domain analysis with reference to LSPR excitations. Figure SPR and SERS images for isolated, elongated and two-dimensional gold nanostructures  相似文献   

20.
A wavelength modulation surface plasmon resonance biosensor based on ZnO-Au nanocomposites for the detection of human IgM was developed. Self-assembly technique has the advantages of flexibility, simplicity and the precise control of film component and was applied to the building of the sensor. The ZnO-Au nanocomposites are in a dumbbell-like shape and can be immobilized on the Au film through 1,6-hexanedithiol by covalent attachment. Meanwhile the activated ZnO nanocrystals can be used to connect protein. The biosensor based on ZnO-Au nanocomposites was used to detect human IgM. Some experimental conditions were examined and optimized. In the selected conditions, the modified biosensor exhibits a satisfactory response for human IgM in the concentration range of 0.30-20.00 μg mL−1. However, the biosensor without ZnO-Au nanocomposites shows a response for human IgM in the concentration range of 1.25-20.00 μg mL−1. Compared with the biosensor based on Au film, when the biosensor based on the ZnO-Au nanocomposites was applied, the sensitivity for determination of human IgM is significantly enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号