首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AdipoRon is an orally active adiponectin receptor agonist. The aim of this study was to characterize the metabolites of AdipoRon in rat and human liver microsomes using ultra‐high performance liquid chromatography combined with Q‐Exactive Orbitrap tandem mass spectrometry (UPLC‐Q‐Exactive‐Orbitrap‐MS) together with data processing techniques including extracted ion chromatograms and a mass defect filter. AdipoRon (10 μm ) was incubated with liver microsomes in the presence of NADPH and this resulted in a total of 11 metabolites being detected. The identities of these metabolites were characterized by comparing their accurate masses and fragment ions as well as their retention times with those of AdipoRon using MetWorks software. Metabolites M1–M3, M6, and M8–M11 were identified for the first time. Metabolite M4, the major metabolite both in rat and human liver microsomes, was further confirmed using the reference standard. Our results revealed that the metabolic pathways of AdipoRon in liver microsomes were N‐dealkylation (M2), hydroxylation (M, M5–M9), carbonyl reduction (M4) and the formation of amide (M10 and M11). Our results provide valuable information about the in vitro metabolism of AdipoRon, which would be helpful for us to understand the mechanism of the elimination of AdipoRon and, in turn, its effectiveness and toxicity.  相似文献   

2.
The Orbitrap mass analyzer has become a mainstream mass spectrometry technique. In addition to providing a brief introduction to the Orbitrap technology and its continuing development, this article reviews the most recent publications quoting the use of the Orbitrap detection for a variety of chromatographic separation techniques. Its coupling to reversed-phase liquid chromatography (LC) represents undoubtedly the most ubiquitous approach to both small molecule and proteomic analyses. Multi-dimensional LC separations have an important role to play in the proteomics applications while an ultra-high-pressure LC is more frequently encountered in the area of metabolomics and metabolite analysis. Recently, special chromatographic techniques such as hydrophilic interaction chromatography and its variations have also been also cited with the Orbitrap detection.  相似文献   

3.
A lipidomics strategy, combining high resolution reversed-phase liquid chromatography (RPLC) with high resolution quadrupole time-of-flight mass spectrometry (QqTOF), is described. The method has carefully been assessed in both a qualitative and a quantitative fashion utilizing human blood plasma. The inherent low technical variability associated with the lipidomics method allows to measure 65% of the features with an intensity RSD value below 10%. Blood plasma lipid spike-in experiments demonstrate that relative concentration differences smaller than 25% can readily be revealed by means of a t-test. Utilizing an advanced identification strategy, it is shown that the detected features mainly originate from (lyso-)phospholipids, sphingolipids, mono-, di- and triacylglycerols and cholesterol esters. The high resolution offered by the up-front RPLC step further allows to discriminate various isomeric species associated with the different lipid classes. The added value of utilizing a Jetstream electrospray ionization (ESI) source over a regular ESI source in lipidomics is for the first time demonstrated. In addition, the application of ultra high performance LC (UHPLC) up to 1200 bar to extend the peak capacity or increase productivity is discussed.  相似文献   

4.
We report an enabling mass spectrometric method for the analysis of lipid metabolites in order to define better the lipid metabolome in terms of chemical diversity and generate fragment ion spectra of these metabolites as a potential resource for unknown metabolite identification. This work focuses on the analysis of one important class of lipid metabolites, the acylcarnitines. Current analytical methods have only detected and identified a limited number of these metabolites. The method described herein provides the most comprehensive acylcarnitine profile in urine of healthy individuals up to date. It involves an optimized solid phase extraction technique for selective analyte extraction using cartridges containing both lipophilic and cation-exchange properties. The captured analytes are then subjected to ultra-high performance liquid chromatography (UPLC) separation, followed by tandem mass spectrometry (MS/MS) analysis using information-dependent acquisitions and selected reaction monitoring (SRM). The urine of six healthy individuals was analyzed using this method. A total of 355 acylcarnitines were detected; only 43 of them have been previously reported in the urine of healthy individuals. Detection of this large number of acylcarnitines illustrates the great diversity of the lipid metabolome as well as the usefulness of the method for profiling acylcarnitines. Furthermore, the MS/MS spectra of the 355 acylcarnitines will be uploaded to a public human metabolome database as a mass spectrometric resource for unknown metabolite identification.  相似文献   

5.
Rosmarinic acid (RA) is a phenolic acid originally isolated from the herb medicine Rosmarinus officinalis. The purpose of this study was to identify the metabolites of RA. RA was incubated with human liver microsomes in the presence of β-nicotinamide adenine dinucleotide phosphate tetrasodium salt and/or uridine diphosphate glucuronic acid using glutathione (GSH) as a trapping agent. After 60-min incubation, the samples were analyzed using high-resolution liquid chromatography tandem mass spectrometry. Under the current conditions, 14 metabolites were detected and identified. Our data revealed that RA was metabolized through the following pathways: the first pathway is the oxidation of catechol to form ortho-quinone intermediates, which react with GSH to form mono-GSH adducts (M1, M2, and M3) and bis-GSH adducts (M4 and M5); the second pathway is conjugation with glucuronide to yield acylglucuronide (M7), which further reacts with GSH to form RA-S-acyl-GSH adduct (M9); the third pathway is hydroxylation to form M10, M11, and M12, which further react with GSH to form mono-GSH adducts (M13 and M14); the fourth pathway is conjugation with GSH through Michael addition (M6); the fifth pathway is conjugation with glucuronidation, forming M8, which is the major metabolic pathway of RA.  相似文献   

6.
As a suitable way for routine screening of pesticides and control of other organic contaminants in water, the combination of liquid chromatography triple quadrupole tandem mass spectrometry (LC–QqQ-MS/MS) and liquid chromatography–hybrid quadrupole time-of-flight mass spectrometry (LC–QTOF-MS) has been applied to the analysis of 63 surface and waste water samples after conventional solid-phase extraction (SPE). The extracts were screened for 43 pesticides or degradation products by LC–QqQ-MS/MS achieving limits of detection (LOD) ranged from 0.04 to 2 ng L−1. Of the 43 selected pesticides, 33 were detected in water samples. The ESI–QTOF MS instrument was run using two simultaneous acquisition functions with low and high collision energy (MSE approach) and acquiring the full mass spectra. A home-made database containing more than 1100 organic pollutants was used for substance identification. Around 250 of these compounds were available at the laboratory as reference standards. Five pesticides and 3 of their degradation products, different to those selected in the QqQ method, were detected by QqTOF-MS. Thirteen pharmaceuticals and two drugs of abuse were also identified in the samples. In practice, the sample preparation proved to be suitable for both techniques and for a wide variety of substances with different polarity. Mutual confirmation and evidence of co-occurrence of several other organic contaminants were the main advantages of the combination of both techniques.  相似文献   

7.
Isothiazolinones are used as preservatives, biocides and disinfectants in a variety of industrial and domestic applications. Some of the isothiazolinones are difficult to isolate from water due their high polarity. A sensitive and selective analytical method was developed and optimized for the determination of sub-μg/L levels of three isothiazolinones in water samples. Three isothiazolinones are described in this paper: 2-methyl-3-isothiazolinone, 5-chloro-2-methyl-3-isothiazolinone and 4,5-dichloro-2-methyl-3-isothiazolinone. The analytical method involves a robust large-volume direct on-column loop injection of 2 mL on an Aqua ODS HPLC column and tandem MS detection (HPLC–MS/MS). After filtration, samples are directly injected without further pretreatment. Detection limits of the individual target compounds were between 0.03 and 0.1 μg/L employing Multi-Reaction Monitoring (MRM) mass spectrometry. Based on the constant ratio of two selected product-ions together with the retention time, the identification is very selective and quantification is reliable. The method was successfully applied to real samples of membrane flushings, drinking water, surface waters and waste water. Additional investigations showed the instability of the isothiazolinones in river- and waste water. Preservation of river water and waste water samples with sodium azide (NaN3) promotes the stability of the isothiazolines in solution. In membrane flushings, waste water, surface waters and drinking water, levels of the three isothiazolinones were all below the limit of detection. In effluents of households containing washings from normal shampoo use, isothiazolinones could be detected.  相似文献   

8.
In this work a LC–MS/MS method for the determination of two quaternary ammonium growth regulators (chlormequat and mepiquat) in food is reported. The separation was based on hydrophilic interaction liquid chromatography (HILIC) without the use of ion-pair reagents. A gradient elution of acetonitrile and formic acid/ammonium formate buffer from 60 to 40% acetonitrile was enough to achieve a resolution >1.5 in less than 4.0 min. The HILIC system was coupled to a triple quadrupole mass spectrometer equipped with a heated electrospray probe (H-ESI) providing sub-pg LODs in SRM mode. A straightforward sample treatment (SPE C18 clean-up) was enough to provide MLODs at low ppb levels when analysing a range of food samples that covered different kinds of matrices such as fresh fruit, vegetables, fruit juices, baby food, bread, coffee and beer. Chlormequat was found in seven samples (0.8–126 ng/g) but mepiquat was only detected in bread and coffee samples (0.9–166 ng/g).  相似文献   

9.
Oxyresveratrol (trans‐2,4,3′,5′‐tetrahydroxystilbene) is a major compound isolated from Smilax china, a Chinese herbal medicine. The rat urine and bile samples were pretreated by solid‐phase extraction method after oral administration at a dose of 100 mg/kg of oxyresveratrol. Seven metabolites were identified by LC‐MS/MS method with electrospray ionization in negative ion mode. The results indicated that main metabolites of oxyresveratrol were monoglucuronided and monosulfated oxyresveratrol. Based on the results, the metabolic pathway of oxyresveratrol in rat urine and bile was proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Oral prochlorperazine (PCZ), an antiemetic, undergoes extensive first-pass metabolism. The study developed a simultaneous analytical method for PCZ and its major metabolites, prochlorperazine sulfoxide (PCZSO), N-demethylprochlorperazine (NDPCZ) and 7-hydroxyprochlorperazine (PCZOH), in human plasma using an isocratic liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Deproteinized plasma specimens were separated using a 3 μm particle size octadecylsilyl column, and the run time was 10 min. The calibration curves were linear over the concentration ranges of 0.01-40 μg/L for PCZ, NDPCZ and PCZOH, and 0.05-80 μg/L for PCZSO. The intra- and inter-assay precisions and accuracies were within 7.0 and 99-104% and within 9.0 and 99-105%, respectively. The lower limits of quantification in human plasma were 10 ng/L for PCZ, NDPCZ and PCZOH, and 50 ng/L for PCZSO. The validated method was applied to the determination of plasma samples in 37 cancer patients receiving PCZ. Large interindividual variations were observed in plasma concentrations of PCZ, PCZSO, NDPCZ and PCZOH (relative standard deviation, 89.4, 88.7, 86.4 and 78.2%, respectively). In conclusion, this simultaneous LC-MS/MS method with acceptable analytical performance can be helpful for evaluating the pharmacokinetics of PCZ, including the determination of its metabolites in cancer patients and in clinical research.  相似文献   

11.
A liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI–MS/MS) method has been developed and validated to identify and quantify trace levels of cyanotoxins or microcystins (MC) in water, bivalves and fish tissue with enhanced sensitivity and specificity. The method enables confirmation and quantification of six MCs (MC-LA, LF, LR, LW, RR and YR) with a single chromatographic run. The applied chromatography also allows determination of certain MC metabolites (Desmethyl-LR and -RR). By using LC-ESI–MS/MS in multiple reaction monitoring (MRM) mode, the limit of detection and quantitation for the microcystins studied, were determined to be between 0.2 and 1 pg on column (5:1 S/N ratio). These values are below the 2 pg detection limits found in the available literature.  相似文献   

12.
We present a fast liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the analysis of the coccidiostat amprolium in food samples. Tandem mass spectrometry in a triple quadrupole was used for quantitative purposes, and the information from multiple-stage mass spectrometry in an ion-trap mass analyzer contributed to fragmentation studies. Hydrophilic interaction liquid chromatography (HILIC) in a Fused-Core™ column using isocratic elution (acetonitrile:formic acid/ammonium formate buffer pH 4, 50 mM (60:40)) successfully analyzed this compound in less than 3 min. The HILIC system was coupled to heated electrospray-MS/MS using highly selective-selected reaction monitoring (H-SRM) to improve sensitivity and selectivity for the analysis of amprolium, after a simple sample treatment based on an “extract and shoot” strategy. Accurate mass measurements were performed to identify the interfering compound responsible for causing matrix ion enhancement in the signal of amprolium. The addition of l-carnitine (the interfering compound) (1 μg L−1) to standards and sample extracts allowed the use of the external calibration method for quantitative purposes. The LC–MS/MS (H-SRM) method showed good precision (relative standard deviation, RSD, lower than 13%), accuracy and linearity and allowed the determination of amprolium down to the ppb level (LODs between 0.1 and 0.6 μg kg−1).  相似文献   

13.
An analytical method was developed for the determination of 2,6-dichlorobenzamide (BAM) and five degradation products thereof including 2-chlorobenzamide (OBAM), 2,6-dichlorobenzoic acid (DCBA), 2-chlorobenzoic acid (OBA), benzoic acid (BA) and benzamide (BAD) in water samples. Solid-phase extraction was combined with liquid chromatography coupled to tandem mass spectrometry using electrospray ionisation. Groundwater spiked at a concentration of 1.0 μg/L gave recoveries on day 1 between 91 and 102% (relative standard deviation: 2.2–26.5%) for OBAM, BAM, DCBA, BA and OBA, while BAD showed a somewhat lower recovery of 60% (relative standard deviation: 25%). Corresponding figures on day 3 gave recoveries of 97–110% (relative standard deviation: 3–22%) for OBAM, BAM, DCBA, BA and OBA, while BAD had a recovery of 51% (relative standard deviation: 4%). The final SPE-LC–MS/MS method had a LODMethod of 0.009, 0.007, 0.010, 0.021, 0.253 and 0.170 μg/L groundwater for BAD, OBAM, BAM, DCBA, BA and OBA and a LOQMethod of 0.030, 0.023, 0.035, 0.071, 0.842 and 0.565 μg/L groundwater in the same order of appearance. Analysis of three different Danish groundwaters confirmed the occurrence of BAM at levels exceeding the threshold value of 0.1 μg/L, while no degradation products were found above LODMethod.  相似文献   

14.
Chen H  Chen Y  Wang H  Du P  Han F  Zhang H 《Talanta》2005,67(5):142-991
A rapid and sensitive method is described for the determination of scopolamine and its metabolites in rat urine by combining liquid chromatography and tandem mass spectrometry (LC–MS/MS). Various extraction techniques (free fraction, acid hydrolyses and enzyme hydrolyses) and their comparison were carried out for investigation of the metabolism of scopolamine. After extraction procedure, the pretreated samples were injected into a reversed-phase C18 column with mobile phase of methanol/ ammonium acetate (2 mM, adjusted to pH 3.5 with formic acid) (70:30, v/v) and detected by an on-line MS/MS system. Identification and structural elucidation of the metabolites were performed by comparing their changes in molecular masses (ΔM), retention-times and full scan MSn spectra with those of the parent drug. The results revealed that at least 18 metabolites (norscopine, scopine, tropic acid, aponorscopolamine, aposcopolamine, norscopolamine, hydroxyscopolamine, hydroxyscopolamine N-oxide, p-hydroxy-m-methoxyscopolamine, trihydroxyscopolamine, dihydroxy-methoxyscopolamine, hydroxyl-dimethoxyscopolamine, glucuronide conjugates and sulfate conjugates of norscopolamine, hydroxyscopolamine and the parent drug) and the parent drug existed in urine after ingesting 55 mg/kg scopolamine to healthy rats. Hydroxyscopolamine, p-hydroxy-m-methoxyscopolamine and the parent drug were detected in rat urine for up 106 h after ingestion of scopolamine.  相似文献   

15.
An in vivo study of efavirenz metabolites in rats and human patients with ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry combined with MetabolitePilotMT software is reported for the first time. Considering the polarity differences between the metabolites, solid‐phase extraction and protein precipitation were both applied as a part of the sample preparation method. The structures of the metabolites and their fragment ions were identified or tentatively characterized based on the accurate mass and MS2 data. As a result, a total of 15 metabolites, including 11 from rat samples and 13 from human samples, were identified or tentatively characterized. Two metabolites and several new metabolism pathways are reported for the first time. This study provides a practical approach for identifying complicated metabolites through the rapid and reliable ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry technique, which could be widely used for the investigation of drug metabolites.  相似文献   

16.
Recently, matrix-assisted laser desorption ionization (MALDI) technique has been shown to be complementary to electrospray ionization (ESI) with respect to the population of peptides and proteins that can be detected. In this study, we tried to hyphenate MALDI-TOF-TOF-MS and ESI-QUADRUPOLE-TOF-MS with a single 2D liquid chromatography for complicated protein sample analysis. The effluents of RPLC were split into two parts for the parallel MS/MS detection. After optimizing the operation conditions in LC separation and MS identification, a total of 1149 proteins were identified from the global lysate of normal human liver (NHL) tissue. Compared to the single MS/MS detection, the combined analysis increased the number of proteins identified (more than 25%) and enhanced the protein identification confidence. Proteins identified were categorized and analyzed based upon their cellular location, biological process and molecular function. The identification results demonstrated the application potential of a parallel MS/MS analysis coupled with multi-dimensional LC separation for complicated protein sample identification, especially for proteome analysis, such as human tissues or cells extracts.  相似文献   

17.
The metabolism of tanshinone IIA was studied in rats after a single-dose intravenous administration. In the present study, 12 metabolites of tanshinone IIA were identified in rat bile, urine and feces with two LC gradients using LC-MS/MS. Seven phase I metabolites and five phase II metabolites of tanshinone IIA were characterized and their molecular structures proposed on the basis of the characteristics of their precursor ions, product ions and chromatographic retention time. The seven phase I metabolites were formed, through two main metabolic routes, which were hydroxylation and dehydrogenation metabolism. M1, M4, M5 and M6 were supposedly tanshinone IIB, hydroxytanshinone IIA, przewaquinone A and dehydrotanshinone IIA, respectively, by comparing their HPLC retention times and mass spectral patterns with those of the standard compounds. The five phase II metabolites identified in this research were all glucuronide conjugates, all of which showed a neutral loss of 176 Da. M9 and M12 were more abundant than other identified metabolites in the bile, which was the main excretion path of tanshinone IIA and the metabolites. M12 was the main metabolite of tanshinone IIA. M9 and M12 were proposed to be the glucuronide conjugates of two different semiquinones and these semiquinones were the hydrogenation products of dehydrotanshinone IIA and tanshinone IIA, respectively. This hydrogenized reaction may be catalyzed by the NAD(P)H: quinone acceptor oxidoreductase (NQO). The biotransformation pathways of tanshinone IIA were proposed on the basis of this research.  相似文献   

18.
An in vivo study of Strychnos alkaloids metabolites in rats by ultra high performance liquid chromatography with linear ion trap Orbitrap MS is reported for the first time. Two major Strychnos alkaloids compounds including strychnine and brucine were investigated. To obtain optimal extraction efficiency, samples were pretreated by using an SPE plate. The structures of metabolites and their fragment ions were characterized based on the accurate mass and MSn data. Forty‐seven metabolites were identified in rat urine, of which 25 were reported for the first time. Four new metabolism pathways were proposed on the basis of the identified metabolites. This study provides a practical approach for rapidly identifying complicated metabolites, a methodology that could be widely applied not only in forensic and clinically toxicological relevant cases, but also for the structural characterization of metabolites of other compounds.  相似文献   

19.
Belamcanda chinensis has been extensively used as antibechic, expectorant and anti‐inflammatory agent in traditional medicine. Irisflorentin is one of the major active ingredients. However, little is known about the metabolism of irisflorentin so far. In this work, rat liver microsomes (RLMs) were used to investigate the metabolism of this compound for the first time. Seven metabolites were detected. Five of them were identified as 6,7‐dihydroxy‐5,3′,4′,5′‐tetramethoxy isoflavone (M1), irigenin (M2), 5,7,4′‐trihydroxy‐6,3′,5′‐trimethoxy isoflavone (M3), 6,7,4′‐trihydroxy‐5,3′,5′‐trimethoxy isoflavone (M4) and 6,7,5′‐trihydroxy‐5,3′,4′‐trimethoxy isoflavone (M5) by means of NMR and/or HPLC‐ESI‐MS. The structures of M6 and M7 were not elucidated because they produced no MS signals. The predominant metabolite M1 was noted to be a new compound. Interestingly, it was found to possess anticancer activity much higher than the parent compound. The enzymatic kinetic parameters of M1 revealed a sigmoidal profile, with Vmax = 12.02 μm /mg protein/min, Km = 37.24 μm , CLint = 0.32 μL/mg protein/min and h = 1.48, indicating the positive cooperation. For the first time in this work, a new metabolite of irisflorentin was found to demonstrate a much higher biological activity than its parent compound, suggesting a new avenue for the development of drugs from B. chinensis, which was also applicable for other herbal plants. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A sensitive and selective liquid chromatographic–tandem mass spectrometric (LC–MS/MS) method for the determination of bergenin and its phase II metabolite in rat plasma, bile and urine has been developed. Biological samples were pretreated with protein precipitation extraction procedure and enzymatic hydrolysis method was used for converting glucuronide metabolite to its free form bergenin. Detection and quantitation were performed by MS/MS using electrospray ionization and multiple reaction monitoring. Negative electrospray ionization was employed as the ionization source. Sulfamethoxazole was used as the internal standard. The separation was performed on a reverse‐phase C18 (250 × 4.6 mm, 5 μm) column with gradient elution consisting of methanol and 0.5% aqueous formic acid. The concentrations of bergenin in all biological samples were in accordance with the requirements of validation of the method. After oral administration of 12 mg/kg of the prototype drug, bergenin and its glucuronide metabolite were determined in plasma, bile and urine. Bergenin in bile was completely excreted in 24 h, and the main excreted amount of bergenin was 97.67% in the first 12 h. The drug recovery in bile within 24 h was 8.97%. In urine, the main excreted amount of bergenin was 95.69% in the first 24 h, and the drug recovery within 24 h was <22.34%. Total recovery of bergenin and its glucuronide metabolite was about 52.51% (20.31% in bile within 24 h, 32.20% in urine within 48 h). The validated method was successfully applied to pharmacokinetic and excretion studies of bergenin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号