首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, fast and sensitive liquid chromatography–electrospray tandem mass spectrometry method was established for trace levels of nine haloacetic acids (HAAs) in drinking water. Water samples were removed of residual chlorine by adding l-ascorbic acid, and directly injected after filtered by 0.22 μm membrane. Nine HAAs were separated by liquid chromatography in 7.5 min, and the limits of detection were generally between 0.16 and 0.99 μg/L except for chlorodibromoacetic acid (1.44 μg/L) and tribromoacetic acid (8.87 μg/L). The mean recoveries of nine target compounds in spiked drinking water samples were 80.1–108%, and no apparent signal suppression was observed. Finally, this method was applied to determine HAAs in the tap water samples collected from five waterworks in Shandong, China. Nine HAAs except for monochloroacetic acid, monobromoacetic acid, dibromochloroacetic acid and tribromoacetic acid were detected, and the total concentrations were 7.79–36.5 μg/L. The determination results well met the first stage of the Disinfectants/Disinfection By-Products (D/DBP) Rules established by U.S.EPA and Guidelines for Drinking-water Quality of WHO.  相似文献   

2.
The mechanism underlying the enrichment power by pressure-assisted electrokinetic injection (PAEKI) in capillary electrophoresis (CE) was investigated for on-line pre-concentration of arsenic [As(III) and As(V)], selenium [Se(IV) and Se(VI)] and bromate (BrO(3)(-)). Analyte diffusion behaviour from PAEKI sample plugs were evaluated by monitoring peak broadening as a function of stagnant time and position in the capillary. During PAEKI, anionic analytes accumulate at the sample-separation buffer boundary. We proposed that a counter-ion layer formed in PAEKI, where a cation layer was formed at the separation buffer side of boundary. The cation layer served as a soft boundary which impeded zone broadening via electrostatic attraction between layers. This effect likely played an important role in maintaining focused analyte bands by suppressing diffusion. Comparison of analyte behaviour in PAEKI injected sample plugs to behaviour in hydrodynamically injected ones proved the existence of a counter-ion layer. The dependence of analyte diffusion in PAEKI plugs on electrochemical properties (viscosity, conductivity, electrophoretic mobility) further supported the hypothesis. Additionally, it was noted that analytes with low electrophoretic mobility were more efficiently pre-concentrated by PAEKI and were less subject to forces of dispersion than analytes with greater electrophoretic mobility. PAEKI-CE coupled to electrospray tandem mass spectroscopy (ESI-MS/MS) was then optimized and validated for detection of arsenic, selenium and bromate in water samples. On-line enrichment of the target analytes was achieved with 1-3 ng mL(-1) detection limits, which was below the maximum contaminant levels in drinking water for all five anions studied. Noteworthy, the potential of the method for unbiased detection of molecular species in untreated water was demonstrated. No contamination was detected in the water samples tested; however, recovery was 90-118% for spiked samples. The method was demonstrated be comparable to current methods for detection of inorganic contaminants in drinking water and is a good alternative method to ion chromatography/liquid chromatography-MS.  相似文献   

3.
Kanchanamayoon  Wanna 《Chromatographia》2015,78(17):1135-1142

Chlorination has been widely used as a disinfection method for control of pathogens in drinking water and wastewater treatment plants. Chlorination disinfection byproducts (DBPs) are formed when organic matter is present in water, and they are harmful to human health. The main groups of compounds formed are trihalomethanes (THMs), haloacetic acids (HAAs) and haloacetonitriles (HANs). Analysis of THMs, HAAs and HANs in water samples has been reported. This paper reviews the various sample preparation methods in use for analysis of THMs, HAAs and HANs in water samples.

  相似文献   

4.
The identification and measurement of negatively charged DNA oligonucleotides and their benzo[a]pyrene-7,8,9,10-tetrahydro-7,8-dihydrodiol-9,10-epoxide (BPDE) adducts by capillary zone electrophoresis (CZE) hyphenated mass spectrometry (MS) system using an on-line enrichment technique, the constant pressure assisted electrokinetic injection (PAEKI), is described here. With optimized PAEKI conditions, an on-line sample concentration power of 300-800 times could be reached for both single-stranded (ss) and double-stranded (ds) oligonucleotides during a 90-s PAEKI injection. The detection limits using single quadrupole MS in the scan mode were 0.01-0.03 microM for ss and 0.04-0.08 microM for ds oligonucleotides, respectively. The relative standard deviations at 1 microM of oligonucleotides were from 7.6 to 15.8%. A dynamic linear calibration range of about two orders of magnitude were observed. Good mass spectra of oligonucleotides and BPDE-oligonucleotide adducts at low micromolar levels could be obtained using single quadrupole MS which could be a helpful tool in DNA adducts studies.  相似文献   

5.
The combination of capillary electrophoresis (CE) and mass spectrometry (MS) is particularly well adapted to bioanalysis due to its high separation efficiency, selectivity, and sensitivity; its short analytical time; and its low solvent and sample consumption. For clinical and forensic toxicology, a two-step analysis is usually performed: first, a screening step for compound identification, and second, confirmation and/or accurate quantitation in cases of presumed positive results. In this study, a fast and sensitive CE-MS workflow was developed for the screening and quantitation of drugs of abuse in urine samples. A CE with a time-of-flight MS (CE-TOF/MS) screening method was developed using a simple urine dilution and on-line sample preconcentration with pH-mediated stacking. The sample stacking allowed for a high loading capacity (20.5% of the capillary length), leading to limits of detection as low as 2 ng mL−1 for drugs of abuse. Compound quantitation of positive samples was performed by CE-MS/MS with a triple quadrupole MS equipped with an adapted triple-tube sprayer and an electrospray ionization (ESI) source. The CE-ESI-MS/MS method was validated for two model compounds, cocaine (COC) and methadone (MTD), according to the Guidance of the Food and Drug Administration. The quantitative performance was evaluated for selectivity, response function, the lower limit of quantitation, trueness, precision, and accuracy. COC and MTD detection in urine samples was determined to be accurate over the range of 10–1000 ng mL−1 and 21–1000 ng mL−1, respectively.  相似文献   

6.
The reaction between α,α-dialkylated amino acids and amino acid N-carboxyanhydrides is slow leading to low concentrations of products (peptides). The detection by capillary electrophoresis of the analytes contained in such samples is therefore a challenging issue. In this work, on-line sample pre-concentration methods based on field-amplified sample stacking have been implemented and compared. Because of the high ionic strength present in the sample matrix, samples were diluted with an organic solvent prior to analysis to decrease the sample conductivity. Different modes of sample injection (field amplified sample injection (FASI), hydrodynamic normal sample stacking (NSS) or large volume sample stacking (LVSS)) were compared. Pre-concentration factors of 20 for FASI, about 30–40 for NSS and 60 for LVSS were obtained for the analysis of (l,l) dipeptide of valine in a large excess of isovaline and 0.2 M of ionic strength. For LVSS application and resolution optimisation, a new non-covalent coating based on the partial modification of the capillary surface was used to tune the electroosmotic flow magnitude and to pump the sample matrix out of the capillary. This on-line sample pre-concentration step allowed confirming that oligopeptides including α,α-dialkylated amino acids are formed during the reaction between α,α-dialkylated amino acids and N-carboxyanhydride amino acids.  相似文献   

7.
A new approach using single-drop microextraction (SDME) and gas chromatography–mass spectrometry for the determination of six haloacetic acids (HAAs) in water samples was presented. n-Octanol was used as extractant and derivatization reagent. HAAs were derivatized both simultaneously during the extraction in the solvent microdrop, and after extraction, inside a glass microvial (1.1 mm I.D.). Trifluoroacetic anhydride (TFAA) was used as the reaction catalyst. The influence of catalyst amount, derivatization time and temperature on the yield of the in-microvial derivatization was investigated. Derivatization reaction was performed using 1.2 μL of TFAA at 100 °C for 20 min. Extraction was performed using 1.8 μL of n-octanol containing TFAA (10%, v/v). Experimental parameters, such as, exposure time, sample pH and extraction temperature were controlled and optimized. Analytical parameters such as linearity, precision and limit of detection were also evaluated. The proposed method was proved to be a suitable analytical procedure for HAAs in water with limits of detection 0.1–1.2 μg/L. The relative recoveries range from 82.5 to 97.6% for all the target analytes. Precision values were from 5.1 to 8.5% (as intra-day relative standard deviation, RSD) and 8.8–12.3% (as inter-day RSD).  相似文献   

8.
Honglan Shi  Craig Adams 《Talanta》2009,79(2):523-183
Haloacetic acids (HAAs) and bromate are toxic water disinfection by-products (DBPs) that the U.S. Environmental Protection Agency has regulated in drinking water. Iodoacetic acids (IAAs) are the emerging DBPs that have been recently found in disinfected drinking waters with higher toxicity than their corresponding chloro- and bromo-acetic acids. This study has developed a new rapid and sensitive method for simultaneous analysis of six brominated and four iodinated acetic acids, bromate, iodate, bromide, and iodide using ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS). Mono-, di- and tri-chloroacetic acids are not detected by this method because the sensitivity of ICP-MS analysis for chlorine is poor. Following IC separation, an Elan DRC-e ICP-MS was used for detection, with quantitation utilizing m/z of 79, 127, and 74 amu for Br, I, and Ge (optional internal standard) species, respectively. Although the primary method used was an external standard procedure, an internal standard method approach is discussed herein as well. Calibration and validation were done in a variety of natural and disinfection-treated water samples. The method detection limits (MDLs) in natural water ranged from 0.33 to 0.72 μg L−1 for iodine species, and from 1.36 to 3.28 μg L−1 for bromine species. Spiked recoveries were between 67% and 123%, while relative standard deviations ranged from 0.2% to 12.8% for replicate samples. This method was applied to detect the bromine and iodine species in drinking water, groundwater, surface water, and swimming pool water.  相似文献   

9.
A quantitative method for the determination of organic acids in atmospheric particles is developed. The method couples a derivatisation step (thermally assisted hydrolysis and methylation) and a Curie point pyrolyser as a thermal desorption technique and gas chromatography–mass spectrometry (CPP-GC–MS). Among the reagents tested (tetramethylammonium hydroxide (TMAH), tetramethylammonium acetate (TMAAc) and phenyltrimethylammonium hydroxide (TMPAH)), the best performance was found using TMAAc as a derivatisation reagent for the reaction time of 4 s at 510 °C as heating temperature. Calibration was performed for a series of fatty acids (FA), dicarboxylic acids (DCA) and terpenoic acids (TA) under these conditions. Coefficients of determination (R2) were between 0.94 and 0.98. Limits of detection (LOD) were in the nanogram-range between 0.1 and 3.6 ng. The method is applied on atmospheric particle samples to obtain the quantification reproducibility and quantification limits. Reproducibility was determined in terms of relative standard deviations (RSD) for ambient aerosol samples collected by a high-volume-sampler (HVS, RSD = 6–45%, n = 10) and a Berner impactor (BI, RSD = 5–34%, n = 10). Based on 24 h sampling time the developed method enables quantification of all three classes of acids for both sampling techniques. Calibration data and presented volume concentrations are compared with literature data. A comparison with an off-line methylation-GC–MS using BF3 as a derivatisation reagent and capillary electrophoresis coupled mass spectrometry (CE-MS) showed a good agreement. Minimal sample preparation is the main advantage of the developed method. Depending on the sensitivity requirements the present method can be a fast and simple alternative to GC–MS techniques with conventional sample preparation steps for semi-volatile organic acids.  相似文献   

10.
Suedee R  Intakong W  Dickert FL 《Talanta》2006,70(1):194-201
An alternative screening method for haloacetic acids (HAAs) disinfection by-products in drinking water is described. The method is based on the use of piezoelectric quartz crystal microbalance (QCM) transducing system, where the electrode is coated with a trichloacetic acid-molecularly imprinted polymer (TCAA-MIP). This MIP comprises a crosslinked poly(ethyleneglycoldimethacrylate-co-4-vinylpyridine). The coated QCM is able to specifically detect the analytes in water samples in terms of the mass change in relation to acid-base interactions of the analytes with the MIP. The TCAA-MIP coated QCM showed high specificity for the determination of TCAA in aqueous solutions containing inorganic anions, but its sensitivity reduced in water samples containing hydrochloric acid due to a mass loss at the sensor surface. Cross-reactivity studies with HAA analogs (dichloro-, monochloro-, tribromo-, dibromo-, and monobromo-acetic acids) and non-structurally related TCAA molecules (acetic acid and malonic acid) indicated that recognition of the structurally related TCAA compounds by the TCAA-MIP-based QCM is due to a carboxylic acid functional group, and probably involves a combination of both size and shape selectivity. The total response time of sensor is in the order of 10 min. The achieved limits of detection for HAAs (20-50 μg l−1) are at present higher than the actual concentrations found in real-life samples, but below the guidelines for the maximum permissible levels (60 μg l−1 for mixed HAAs). Recovery studies with drinking water samples spiked with TCAA or spiked with mixtures of HAAs revealed the reproducibility and precision of the method. The present work has demonstrated that the proposed assay can be a fast, reliable and inexpensive screening method for HAA contaminants in water samples, but further refinement is required to improve the limits of detection.  相似文献   

11.
Three primary nerve agent degradation products (ethyl-, isopropyl- and pinacolyl methylphosphonic acid) have been determined in water samples using on-line solid phase extraction-liquid chromatography and mass spectrometry (SPE-LC–MS) with electrospray ionisation. Porous graphitic carbon was employed for analyte enrichment followed by hydrophilic interaction chromatography. Diethylphosphate was applied as internal standard for quantitative determination of the alkyl methylphosphonic acids (AMPAs). By treating the samples with strong cation-exhange columns on Ba, Ag and H form, the major inorganic anions in water were removed by precipitation prior to the SPE-LC–MS determination. The AMPAs could be determined in tap water with limits of detection of 0.01–0.07 μg L−1 with the [M−H] ions extracted at an accuracy of ±5 mDa. The within and between assay precisions at analyte concentrations of 5 μg L−1 were 2–3%, and 5–9% relative standard deviation, respectively. The developed method was employed for determination of the AMPAs in three natural waters and a simulated waste water sample, spiked at 5 μg L−1. Recoveries of ethyl-, isopropyl- and pinacolyl methylphosphonic acid were 80–91%, 92–103% and 99–106%, respectively, proving the applicability of the technique for natural waters of various origins.  相似文献   

12.
A ThermoFinnigan sheath liquid flow capillary electrophoresis-mass spectrometry system designed for coupling via a co-axial interface was coupled through an adapted via an alternative, commercially available interface for orthogonal sampling. The affordable, reversible structural alterations made in the commercial LC-MS interface resulted in improved analytical performance.The results of a conventional capillary electrophoresis (CE) method using a commercial co-axial source to determine antioxidant phenolic acids present in virgin olive oil, were compared with those obtained by using a modified orthogonal sampling position. In both cases, separations were done using a 10 mM ammonium acetate/ammonium hydroxide buffer solution at pH 10.0 and a constant applied voltage of 25 kV. The operating variables for the mass spectrometry interface were re-optimized for the modified orthogonal orientation. This allowed the sheath liquid, sheath gas flow rates and capillary voltage to be lowered with respect to the co-axial coupling configuration. In addition, the orthogonal sampling position provided a higher selectivity by effect of ion sampling excluding larger droplets—with an increased momentum along the axis—which were drained through the sink at the bottom of the ion source. Also, the new configuration facilitated sample ionization, improved electrospray stability and led to stronger signals as a result.The new system was validated in terms of precision (repeatability), linearity, and limits of detection and quantification. A comparison of the validation data with the results previously obtained by using a commercial co-axial configuration revealed the adapted orthogonal sampling position to provide better repeatability in both migration times and relative peak areas (<1% and 7% respectively with n = 15 replicates), a good linear range (with levels in the microgram-per-litre region) and lower limits of detection—especially for the compounds detected with the lowest sensitivity when co-axial ESI was used, as HFA, GEN, FER and VAN finding LOD among 24-3.0 μg L−1 respectively.  相似文献   

13.
Song L  Guo Z  Chen Y 《Analytica chimica acta》2011,703(2):257-263
A fast, simple and cost-effective one-pot labeling strategy coupled with capillary zone electrophoresis was developed for the complete separation of amino acid mixture. The strategy includes two steps of reactions: Cyanuric chloride was made to react first with 7-amino-1,3-naphthalenedisulfonic acid monopotassium salt at 0 °C for 10 min, and then with amino acids at 55 °C for 6 min. The resulted products, after diluted with water, were injected into capillary zone electrophoresis system for separation. Using a running buffer of 20 mM sodium tetraborate decahydrate at pH 10.1, nineteen amino acids were efficiently separated in 25 min, with relative standard deviation of 0.36–1.6% and 0.96–2.1% (within and between days, respectively) for migration time and 0.030–1.6% and 0.22–2.4% (within and between days, respectively) for peak area. The proposed method has been successfully applied to the determination of free amino acids in biofluids, including human serum, urine, and saliva. The linearity of quantification was over two orders of magnitude for most amino acids, with a correlation coefficient larger than 0.999. The average recovery, determined by spiking a known amount of amino acid standards into real samples, was in a range from 91.6% to 105.9%. This method can be a noninvasive means since it could directly assay the urine and saliva samples.  相似文献   

14.
A new method for the determination of nine haloacetic acids (HAAs) with ion chromatography (IC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) was developed. With the very hydrophilic anion-exchange column and steep gradient of sodium hydroxide, the nine HAAs could be well separated in 15 min. After suppression with an ASRS suppressor that was introduced in between IC and ICP-MS, the background was much decreased, the interference caused by sodium ion present in eluent was removed, and the sensitivities of HAAs were greatly improved. The chlorinated and brominated HAAs could be detected as 35ClO and 79Br without interference of the matrix due to the elemental selective ICP-MS. The detection limits for mono-, di-, trichloroacetic acids were between 15.6 and 23.6 microg/l. For the other six bromine-containing HAAs, the detection limits were between 0.34 and 0.99 microg/l. With the pretreatment of OnGuard Ag cartridge to remove high concentration of chloride in sample, the developed method could be applied to the determination of HAAs in many drinking water matrices.  相似文献   

15.
在毛细管电泳的胶束电动色谱(MEKC)模式下,采用压力辅助电动进样(PAEKI)的进样方式在线富集4种酚类雌激素(PEs)。对影响PAEKI的进样电压、进样时间等进行考察,并与传统的压力进样比较。结果表明,在最优的PAEKI条件下(-9 kV,0.3 psi(约2.1 kPa),0.4 min),4种PEs在7 min内基线分离,线性关系良好,相关系数(r)大于0.9936,己烷雌酚和双烯雌酚的线性范围为0.05~5 mg/L、双酚A和己烯雌酚的线性范围为0.1~10 mg/L;检出限(S/N=3)为0.0071~0.017 mg/L,富集倍数为11~15。使用该MEKC-PAEKI法对自来水和湖水水样进行测定,得到定量限(S/N=10)分别为0.029~0.064 mg/L和0.033~0.079 mg/L;加标回收率为75.6%~110.1%,相对标准偏差(n=5)为4.6%~11.8%。PAEKI不需要使用其他试剂,只需对电泳仪的参数进行适当调整即可实现对分析物的在线富集,简单、快速、自动化程度高。  相似文献   

16.
固相萃取-离子色谱法测定饮用水中的痕量卤代乙酸   总被引:3,自引:0,他引:3  
孙迎雪  黄建军  顾平 《色谱》2006,24(3):298-301
建立了固相萃取-离子色谱(SPE-IC)测定饮用水中痕量卤代乙酸(HAAs)(包括一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸和二溴乙酸)的方法。固相萃取采用LiChrolut EN SPE柱来进行痕量待测物的预浓缩(25倍)和基体杂质的消除,用NaOH(10 mmol/L)洗脱;色谱分离采用亲水性、高容量、氢氧化物选择型阴离子交换柱Dionex IonPac AS16(250 mm×4 mm i.d.),以NaOH为流动相进行浓度梯度淋洗,淋洗速度为0.8 mL/min,电导检测,进样量为500 μL。结果表明,用SPE-IC法测定HAAs,一溴乙酸的检测限为12.5 μg/L,其余4种HAAs的检测限为0.38~1.69 μg/L。该法可实现对饮用水中痕量卤代乙酸的测定。  相似文献   

17.
This article presents the different modes and configurations of liquid-phase microextraction (LPME) through comparison with headspace solid-phase microextraction (HS-SPME) for the simultaneous extraction/methylation of the nine haloacetic acids (HAAs) found in water. This is the first analytical case reported of solvent bar extraction–preconcentration–derivatisation assisted by an ion-pairing transfer for HAAs. In this method, 5 μL of the organic extractant, decane, was confined within a hollow-fibre membrane that was placed in a stirred aqueous sample containing the derivatising reagents (dimethylsulphate with a tetrabutylammonium salt). With heating at 45 °C in the HS-SPME method, some organic solvents (extractant, excess of derivatising reagent) are also volatilised and compete with the esters on the fibre (the fibre is damaged and it can be reused only 50−60 times). In addition, the HS-SPME method provides inadequate sensitivity (limits of detections between 0.3 and 5 μg/L) to quantify HAAs at the level usually found in drinking waters. Alternative headspace LPME methods for HAAs require heating (45 °C, 25 min) to derivatise and volatilise the esters but, by using solvent bar microextraction (SBME), the extraction/methylation takes place at room temperature without degradation of HAAs to trihalomethanes. Adequate precision (relative standard deviation of approximately 8%), linearity (0.1–500 μg/L) and sensitivity (10 times higher than the HS-SPME alternative) indicate that the SBME method can be a candidate for routine determination of HAAs in tap water. Finally, the SBME method was applied for the analysis of HAAs in tap and swimming pool water and the results were compared with those of a previous validated headspace gas chromatography–mass spectrometry method.   相似文献   

18.
Haloacetic acids (HAAs) were determined in different water samples by a new, fast and simple analysis method based on enrichment of 50-ml water samples at pH 1.8 by solid-phase extraction (SPE) followed by liquid chromatography (LC) separation and electrospray ionization mass spectrometric detection in the negative ionization mode. Deprotonated (M-H)-haloacetates and decarboxylated (M-COOH)- ions were detected. Different polymeric SPE sorbents were tested, and LiChrolut EN was found to be the best material for the extraction. Complete LC separation of all compounds could only be achieved by ion-pair chromatography using triethylamine as volatile ion-pairing reagent. The detection limits were in the low microg/l range. High microg/l concentration levels for the chlorinated and brominated haloacetates were found in drinking water from a drinking water treatment plant in Barcelona, and the corresponding tap water. In swimming pool water samples from Catalonia mg/l levels and in surface river water from Portugal microg/l values were detected. These results confirm other recent reports on the ubiquitous occurrence of HAAs in aqueous environments.  相似文献   

19.
An alternative method for gas chromatographic determination of haloacetic acids (HAAs) in water using direct derivatization followed by hollow fiber membrane liquid-phase microextraction (HF-LPME) has been developed. The method has improved the sample preparation step according to the conventional US EPA Method 552.2 by combining the derivatization and the extraction into one step prior to determination by gas chromatography electron captured detector (GC-ECD). The HAAs were derivatized with acidic methanol into their methyl esters and simultaneously extracted with supported liquid hollow fiber membrane in headspace mode. The derivatization was attempted directly in water sample without sample evaporation. The HF-LPME was performed using 1-octanol as the extracting solvent at 55 °C for 60 min with 20% Na2SO4. The linear calibration curves were observed for the concentrations ranging from 1 to 300 μg L−1 with the correlation coefficients (R2) being greater than 0.99. The method detection limits of most analytes were below 1 μg L−1 except DCAA and MCAA that were 2 and 18 μg L−1, respectively. The recoveries from spiked concentration ranged from 97 to 109% with %R.S.D. less than 12%. The method was applied for determination of HAAs in drinking water and tap water samples. The method offers an easy one step high sample throughput sample preparation for gas chromatographic determination of haloacetic acids as well as other contaminants in water.  相似文献   

20.
Two in‐line enrichment procedures (large volume sample stacking (LVSS) and field amplified sample injection (FASI)) have been evaluated for the CZE analysis of haloacetic acids (HAAs) in drinking water. For LVSS, separation on normal polarity using 20 mM acetic acid–ammonium acetate (pH 5.5) containing 20% ACN as BGE was required. For FASI, the optimum conditions were 25 s hydrodynamic injection (3.5 kPa) of a water plug followed by 25 s electrokinetic injection (?10 kV) of the sample, and 200 mM formic acid–ammonium formate buffer at pH 3.0 as BGE. For both FASI and LVSS methods, linear calibration curves (r2>0.992), limit of detection on standards prepared in Milli‐Q water (49.1–200 μg/L for LVSS and 4.2–48 μg/L for FASI), and both run‐to‐run and day‐to‐day precisions (RSD values up to 15.8% for concentration) were established. Due to the higher sensitive enhancement (up to 310‐fold) achieved with FASI‐CZE, this method was selected for the analysis of HAAs in drinking water. However, for an optimal FASI application sample salinity was removed by SPE using Oasis WAX cartridges. With SPE‐FASI‐CZE, method detection limits in the range 0.05–0.8 μg/L were obtained, with recoveries, in general, higher than 90% (around 65% for monochloroacetic and monobromoacetic acids). The applicability of the SPE‐FASI‐CZE method was evaluated by analyzing drinking tap water from Barcelona where seven HAAs were found at concentration levels between 3 and 13 μg/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号