首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
To enhance sample signals and improve homogeneity in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) analysis, a simple, rapid, and efficient sample preparation method was developed in this study. Polydimethylsiloxane (PDMS) was coated on a stainless steel MALDI plate, forming a transparent, hydrophobic surface that enhanced sample signals without producing observable background signals. Compared to the use of an unmodified commercial metal MALDI plate, peptide signals were enhanced by ~7.1–11.0-fold due to the reduced sample spot area of the PDMS-coated plate, and showed improved peptide mass fingerprinting (PMF) and MS/MS peptide sequencing results. In the analysis of phosphopeptides and carbohydrates with a 2,5-dihydroxybenzoic acid (DHB) matrix, the PDMS-coated plate showed improved sample homogeneity and signal enhancements of ~5.2–8.2-fold and ~2.8–3.2-fold, respectively. Improved sensitivity in the observation of more unique fragment ions by MS/MS analysis, to successfully distinguish isomeric carbohydrates, was also illustrated. In protein analysis with a sinapinic acid (SA) matrix, a ~3.4-fold signal enhancement was observed. The PDMS film coating was easily removed and refabricated to avoid sample carryover, and was applicable to diverse commercial MALDI plates. The PDMS-coated approach is a simple, practical, and attractive method for enhancing analyte signals and homogeneity.  相似文献   

2.
This paper reports a facile synthesis of molybdenum disulfide nanosheets/silver nanoparticles (MoS2/Ag) hybrid and its use as an effective matrix in negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The nanohybrid exerts a strong synergistic effect, leading to high performance detection of small molecule analytes including amino acids, peptides, fatty acids and drugs. The enhancement of laser desorption/ionization (LDI) efficiency is largely attributed to the high surface roughness and large surface area for analyte adsorption, better dispersibility, increased thermal conductivity and enhanced UV energy absorption as compared to pure MoS2. Moreover, both Ag nanoparticles and the edge of the MoS2 layers function as deprotonation sites for proton capture, facilitating the charging process in negative ion mode and promoting formation of negative ions. As a result, the MoS2/Ag nanohybrid proves to be a highly attractive matrix in MALDI-TOF MS, with desired features such as high desorption/ionization efficiency, low fragmentation interference, high salt tolerance, and no sweet-spots for mass signal. These characteristic properties allowed for simultaneous analysis of eight different drugs and quantification of acetylsalicylic acid in the spiked human serum. This work demonstrates for the first time the fabrication and application of a novel MoS2/Ag hybrid, and provides a new platform for use in the rapid and high throughput analysis of small molecules by mass spectrometry.  相似文献   

3.
Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) was successfully applied for the analysis of various lipid classes. It can also be used for monitoring the digestion of phosphatidylcholine (PC) with phospholipase A2 (PLA2) and it was shown that MALDI-TOF MS possesses a number of advantages over well established methods for this purpose. In this work, we use MALDI-TOF MS for determination of the substrate specificity of neutrophil PLA2. For the comparison of the selectivity of the enzyme to various phospholipid (PL) classes, the intensities of the signals arising from the product of the reaction (Sp) and the signal intensity of the residual substrate (Ss) were compared and the resulting Sp/Ss ratio was used as the measure. This approach was first tested with a model system pancreatic PLA2 and afterwards two sources of the neutrophil PLA2—the enzyme extracted from the neutrophils and the enzyme released from these cells—were tested for their substrate specificity. We will show that the neutrophil-secreted PLA2 possesses high preferences for digestion of phosphatidic acid (PA) over other phospholipids. The method applied here is simple and much information can be obtained from a single mass spectrum. Moreover, this approach works well also with a crude biological systems, i.e. no prior purification of the enzyme is required for means of characterisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号