首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
A label-free sensing assay for ethanolamine (EA) detection based on G-quadruplex-EA binding interaction is presented by using G-rich aptamer DNA (Ap-DNA) and electrochemical impedance spectroscopy (EIS). The presence of K+ induces the Ap-DNA to form a K+-stabilized G-quadruplex structure which provides binding sites for EA. The sensing mechanism was further confirmed by circular dichroism (CD) spectroscopy and EIS measurement. As a result, the charge transfer resistance (RCT) is strongly increased as demonstrated by using the ferro/ferricyanide ([Fe(CN)6]3−/4−) as a redox probe. Under the optimized conditions, a linear relationship between ΔRCT and EA concentration was obtained over the range of 0.16 nM and 16 nM EA, with a detection limit of 0.08 nM. Interference by other selected chemicals with similar structure was negligible. Analytical results of EA spiked into tap water and serum by the sensor suggested the assay could be successfully applied to real sample analysis. With the advantages of high sensitivity, selectivity and simple sensor construction, this method is potentially suitable for the on-site monitoring of EA contamination.  相似文献   

2.
The fabrication of a thermolysin-based biosensor capable of detecting ochratoxin A (OTA) from food samples is described. The electrochemical deposition of calcium cross-linked cellulose film (CCLC) and gold nanoparticles (AuNPs) on graphene (GR) for modification of a glassy carbon electrode (GCE) is the first step. Then the thermolysin (TLN) enzyme in a polyvinyl alcohol (PVA)/polyethylenimine (PEI) matrix is immobilized. The impedimetric biosensor response is linear from 0.2 nM to 100 nM with a detection limit of 0.2 nM. The obtained stable and reproducible biosensor is then applied for the detection of OTA in spiked extracts from coffee beans.  相似文献   

3.
Novel biotin-tagged photoaffinity probes based on a trifunctional tertiary amine scaffold were synthesized and evaluated as vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors. Probes 3a-c inhibit VEGF induced proliferation in HUVE cells, with IC50 values of 29.7, 33.3, and 37.7 μM, respectively. Moreover, we identified the interaction of 3b with VEGFR-2 in photoaffinity labeling experiment using HUVE cells.  相似文献   

4.
In this paper, the DNA-templated Ag/Pt bimetallic nanoclusters were successfully synthesized using an optimized synthetic scheme. The obtained DNA-Ag/Pt NCs have an ultrasmall particle size and excellent distribution. The DNA-Ag/Pt NCs show intrinsic peroxidase-mimicking activity and can effectively catalyze the H2O2-mediated oxidation of a substrate, 3,3',5,5'-tetramethylbenzidine (TMB), to produce a blue colored product. Based on this specific property, we employed the aptamer of VEGF to design a label-free electrochemical biosensor for VEGF detection. Under the optimized experimental conditions, a linear range from 6.0 pmol/L to 20 pmol/L was obtained with a detection limit of 4.6 pmol/L. The proposed biosensor demonstrated its high specificity for VEGF and could directly detect the VEGF concentration in human serum samples of breast cancer patients with satisfactory results. This novel electrochemical aptasensor was simple and convenient to use and was cost-effective and label-free in design, and would hold potential applications in medical diagnosis and treatment.  相似文献   

5.
Epidermal growth factor receptor (EGFR) is an attractive target for tumor therapy because it is overexpressed in the majority of solid tumors and the increase in receptor expression levels has been linked with a poor clinical prognosis. Also it is well established that blocking the interaction of EGFR and the growth factors could lead to the arrest of tumor growth and possibly result in tumor cell death. A13 is a murine monoclonal antibody (mAb) that specifically binds to various sets of EGFR-expressing tumor cells and inhibits EGF-induced EGFR phosphorylation. We isolated human immunoglobulin genes by guided selection based on the mAb A13. Four different human single chain Fvs (scFvs) were isolated from from hybrid scFv libraries containing a human VH repertoire with the VL of mAb A13 and a human VL repertoire with the VH of mAb A13. All the 4 scFvs bound to EGFR-expressing A431 cells. One scFv (SC414) with the highest affinity was converted to IgG1 (ER414). The ER414 exhibited ~17 fold lower affinity compared to the A13 mAb. In addition the ER414 inhibited an EGF-induced tyrosine phosphorylation of EGFR with much lower efficacy compared to the A13 mAb and Cetuximab (Merck KgaA, Germany). We identified that the epitope of A13 mAb is retained in ER414. This approach will provide an efficient way of converting a murine mAb to a human mAb.  相似文献   

6.
There is a growing interest in evaluating molecular markers as predictors of response to new generation of targeted cancer therapies. One of such areas is biological therapy targeting epidermal growth factor receptor gene (EGFR) in lung cancer. The testing of tumor tissue is focused on specific EGFR mutations and EGFR gene amplification, since tumors exhibiting positivity of either of the two marker types are highly sensitive towards the treatment. Although traditional methods of DNA sequencing and fluorescence in situ hybridization are still in use for the detection of EGFR mutations and gene amplification, respectively, there is a need for new dedicated techniques with the primary emphasis on simplicity, sensitivity, speed and cost effectiveness. The main purpose of this work was to integrate diverse assays for both EGFR tests onto a single platform to eliminate the need for different instruments and separate processing. We demonstrate a chip capillary electrophoresis (chipCE) application for EGFR mutation detection by a combination of fragment analysis and denaturing CE along with multiplex ligation-dependent probe amplification (MLPA) for evaluation of EGFR amplification. All separations are carried out in denaturing sieving polymer on a modified Bioanalyzer 2100 chipCE instrument running at temperatures of up to 65°C. The main strength of the resulting high-resolution chipCE application is in its simplicity, speed of analysis and minimal amount of sample required for complete testing of EGFR status. Such an approach could potentially fit medium throughput laboratories providing molecular pathology services for clinical oncologists with fast turnaround times and limited consumption of tissue material.  相似文献   

7.
A library of twenty variously decorated 1,5-disubstituted-(1H-tetrazol-5-yl)methanone oximes was prepared in one single synthetic step exploiting the combination of (Z)-chlorooximes, isocyanides and trimethylsilyl azide. The formal [3+1] cycloaddition between isocyanides and nitrile N-oxides with respect to the [3+1] cycloaddition between isocyanides and azides prevails, while the direct attack of azide onto nitrile N-oxides remains competitive. Finally, an intramolecular cyclization of a (1H-tetrazol-5-yl)methanone oxime to a benzoisoxazole tetrazole is reported for the first time.  相似文献   

8.
In the present study, novel representatives of the important group of biologically-active, dehydroabietic acid-bearing dithiocarbamate moiety, were synthesized and characterized by 1H NMR, 13C NMR, HR-MS. The in vitro antiproliferative activity evaluation (MTT) indicated that these compounds exhibited potent inhibitory activities in various cancer cell lines (HepG-2, MCF-7, HeLa, T-24, MGC-803). Particularly, compound III-b possessed extraordinary cytotoxicity with low micromolar IC50 values ranging from 4.07 to 38.84 µM against tested cancer cell lines, while displayed weak cytotoxicity on two normal cell lines (LO-2 and HEK 293 T). Subsequently, the potential mechanisms of representative compound III-b were elementarily investigated by Transwell experiment, which showed III-b can inhibit cancer cells migration. Annexin-V/PI dual staining showed that the compound can induce HepG-2 cells apoptosis in a dose-dependent manner. Meanwhile this apoptosis may be related to the upregulated protein expression of cleaved-caspase 3, cleaved-caspase 9, Bax and downregulated of Bcl-2 indicated by Western Blot. Later study further confirmed that ROS levels in HepG-2 cells increased significantly with the rise of concentrations. In addition, through the network pharmacology data analyzing, the core targets and signaling pathways of compound III-b for treatment of liver neoplasms were forecasted. Molecular docking model showed that compound III-b had high affinity with hub targets (CASP3, EGFR, HSP90AA1, MAPK1, ERBB2, MDM2), suggesting that compound III-b might target the hub protein to modulate signaling activity. Taken together, these data indicated that dehydroabietic acid structural modification following the “Molecular hybridization” principle is a feasible way to discover the potential multi-targeted antitumor compounds.  相似文献   

9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号