首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Combining both device and particle designs are the essential concepts to be considered in magnetophoretic system development. Researcher efforts are often dedicated to only one of these design aspects and neglecting the interplay between them. Herein, to bring out importance of the idea of integration between device and particle, we reviewed the working principle of magnetophoretic system (includes both device and particle design concepts). Since, the magnetophoretic force is influenced by both field gradient and magnetization volume, hence, accurate prediction of the magnetophoretic force is relying on the availability of information on both parameters. In device design, we focus on the different strategies used to create localized high-field gradient. For particle design, we emphasize on the scaling between hydrodynamic size and magnetization volume. Moreover, we also briefly discussed the importance of magnetoshape anisotropy related to particle design aspect of magnetophoretic systems. Next, we illustrated the need for integration between device and particle design using microscale applications of magnetophoretic systems, include magnetic tweezers and microfluidic systems, as our working example. On the basis of our discussion, we highlighted several promising examples of microscale magnetophoretic systems which greatly utilized the interplay between device and particle design. Further, we concluded the review with several factors that possibly resulted in the lack of research efforts related to device and particle design integration.  相似文献   

2.
《Electrophoresis》2017,38(9-10):1374-1382
A facile, mild method for the preparation of teicoplanin (TE) modified Fe3O4 microparticles (MPs) employing polydopamine (PDA) layer as a versatile secondary reaction platform was developed. The synthesized magnetic MPs (Fe3O4@PDA@TE) were characterized by various characterization techniques, such as TEM, zeta potential etc, to affirm the successful modification of TE to magnetic Fe3O4 MPs. Using the as‐synthesized materials as chiral adsorbents, efficient chiral separation of representative racemic compounds was successfully achieved. Due to the magnetic responsivity, the materials were easily isolated from the racemic solutions under an external magnetic field and could be readily reused for at least three times. Thus, the well‐prepared functional magnetic MPs have great potential in preparative chiral separation.  相似文献   

3.
Ligand-free solid-supported nano and microparticles of Pd(0) (SS-Pd) were used as a heterogeneous catalyst in carbon-heteroatom bond formation reactions. Nitro substituted aryl halides reacted with oxygen, sulfur, and nitrogen nucleophiles to afford the corresponding products in good yields. A one-pot sequential cross coupling and nitro-reduction was also performed using the same SS-Pd catalyst to access amine substituted carbon-heteroatomic molecules. In addition, SS-Pd could be recycled up to seven runs without a significant loss of catalytic activity.  相似文献   

4.
Microfluidic particle focusing has been a vital prerequisite step in sample preparation for downstream particle separation, counting, detection, or analysis, and has attracted broad applications in biomedical and chemical areas. Besides all the active and passive focusing methods in Newtonian fluids, particle focusing in viscoelastic fluids has been attracting increasing interest because of its advantages induced by intrinsic fluid property. However, to achieve a well-defined focusing position, there is a need to extend channel lengths when focusing micrometer-sized or sub-microsized particles, which would result in the size increase of the microfluidic devices. This work investigated the sheathless viscoelastic focusing of particles and cells in a zigzag microfluidic channel. Benefit from the zigzag structure of the channel, the channel length and the footprint of the device can be reduced without sacrificing the focusing performance. In this work, the viscoelastic focusing, including the focusing of 10 μm polystyrene particles, 5 μm polystyrene particles, 5 μm magnetic particles, white blood cells (WBCs), red blood cells (RBCs), and cancer cells, were all demonstrated. Moreover, magnetophoretic separation of magnetic and nonmagnetic particles after viscoelastic pre-focusing was shown. This focusing technique has the potential to be used in a range of biomedical applications.  相似文献   

5.
Poly(ethylene glycol) dimethacrylate (PEGDMA) and methacrylic acid (MAA) based micro and nanoparticles were prepared and evaluated as a carrier for oral delivery of insulin. PEGDMA was synthesized by esterification reaction of the PEG4000 with MAA in the presence of an acid catalyst. Particles of different size were prepared by emulsion polymerization reaction using different concentration of sodium lauryl sulphate (SLS) as an emulsifying agent. Synthesized copolymeric particle were characterized by attenuated total reflectance‐Fourier transform infrared spectroscopy (ATR‐FTIR), scanning electron microscopy, and acid value. The mean particle diameter of the polymeric micro and nanoparticles at various physiologically relevant pH values was measured using dynamic light scattering. Insulin loading efficiency of the particles was found to be directly proportional to the particle size and inversely proportional to the acid value of the particles. In vitro insulin release studies from various insulin loaded particles were performed by simulating the gastrointestinal tract conditions using HPLC. At pH 2.5, the release of insulin from polymeric particles was observed in the range of 5–8% while a significant higher release (20–35%) was observed at pH 7.4 during first 15 min of in vitro release. Largest size copolymeric particles of 8.3 µm also showed the highest efficiency to reduce the blood glucose level in diabetic rabbits. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Electrochemical reactions are usually thermally activated and submitted to mass-transfer effects. Although classically, enhanced kinetics of an electrochemical reaction is obtained by heating the cell and feeding the reactant by forced convection, other means can be used to improve mass-transfer and charge-transfer. This article shortly reviews the effects of magnetic fields in electrochemistry. Using a static or an alternating magnetic field enables to enhance electrodeposition and electrocatalysis, via improved gas and species convection, electrochemical kinetics, and whole reaction efficiency. Such enhancement can mainly be related to Lorentz and Kelvin forces, magneto-hydrodynamics, chiral-induced spin selectivity, and hyperthermia, these effects being described herein.  相似文献   

7.
王威  郝向英  刘双喜 《分子催化》2006,20(5):467-469
传统酸性催化反应以稀硫酸为酸催化剂,虽然稀硫酸的催化活性很高,但由于稀硫酸极易腐蚀设备、不易与反应体系分离、易造成环境污染等缺点,如何用固体超强酸取代稀硫酸作为酸催化剂成为了研究的重点.对目前有关磁性固体超强酸的研究主要有SO42-/ZrO2/MFe2O4(M=Fe,Co,N i)[1~3]和  相似文献   

8.
In this article, the combination of commercial polymeric microparticles (OASIS MCX) and cobalt ferrite nanoparticles is evaluated in dispersive micro-solid phase extraction (D-μSPE) for the determination of six nitroaromatic hydrocarbons in water. The high affinity of the polymeric material toward the target analytes as well as the magnetic behavior of cobalt ferrite nanoparticles are combined in a synergic way to developed an efficient and simple D-μSPE approach. The sorptive performance of the hybrid material is compared with that most usual sorbents and the effect of its synthesis steps on the extraction capability is also evaluated in depth. After the optimization of selected variables, D-μSPE method was assessed in terms of linearity, sensitivity, precision and accuracy. The new extraction method allows the determination of the target compounds with limits of detection in the range from 0.12 to 1.26 μg/L and relative standard deviations lower than 9.6%. The recovery study was performed in two different water samples obtaining percentages from 71 to 103%, which demonstrated the applicability of the hybrid sorbent for the selected analytical problem.  相似文献   

9.
A new extraction agent featuring dopamine self‐polymerized on magnetic Fe3O4 nanoparticles has been successfully synthesized and evaluated for the SPE of berberine from the extract of the traditional Chinese medicinal plant, Cortex Phellodendri. The nanoparticles prepared possessed a core–shell structure and showed super‐paramagnetism. It was found that these polydopamine‐coated nanoparticles exhibited strong and selective adsorption for berberine. Among the chemical components present in C. Phellodendri, only berberine was adsorbed by the nanoparticles and extracted by a following SPE procedure. Various conditions such as the amount of polydopamine‐coated nanoparticles, desorption solvent, desorption time and equilibrium time were optimized for the SPE of berberine. The purity of berberine extracted from C. Phellodendri was determined to be as high as 91.3% compared with that of 9.5% in the extract. The established SPE protocol combined advantages of highly selective enrichment with easy magnetic separation, and proved to be a facile efficient procedure for the isolation of berberine. Further, the prepared polydopamine‐coated magnetic nanoparticles could be reused for multiple times, reducing operational cost. The applicability and reliability of the developed SPE method were demonstrated by isolating berberine from three different C. Phellodendri extracts. Recoveries of 85.4–111.2% were obtained with relative standard deviations ranging from 0.27–2.05%.  相似文献   

10.
Glycoproteins are crucial in massive physiological events and clinical application. It is necessary to prepare new materials to isolate the specific glycoprotein. New and simple core–shell molecularly imprinted polymers were prepared by surface imprinting. The polymers are synthesized with magnetic nanoparticles as the core, water‐soluble dendritic polyethyleneimine as the monomer and the ovalbumin as the template. The prepared imprinted polymers showed thin imprinted shell, biocompatibility and superparamagnetic properties. The resultant materials exhibited fast kinetics, high adsorption capacity, perfect selectivity and reusability. More important, they can absorb the template glycoprotein from the neutral solution and successfully be applied to recognize the ovalbumin from egg white, which means that they can provide an alternate method to isolate glycoprotein from bodily fluids.  相似文献   

11.
In recent years, water pollution and pesticide accumulation in the food chain have become a serious environmental and health hazard problem. Direct determination of these contaminants is a difficult task due to their low concentration level and the matrix interferences. Therefore, an efficient separation and preconcentration procedure is often required prior to the analysis. With the advancement in nanotechnology, various types of magnetic core–shell nanoparticles have successfully been synthesized and received considerable attention as sorbents for decontamination of diverse matrices. Magnetic core–shell nanoparticles with surface modifications have the advantages of large surface‐area‐to‐volume ratio, high number of surface active sites, no secondary pollutant, and high magnetic properties. Due to their physicochemical properties, surface‐modified magnetic core–shell nanoparticles exhibit high adsorption efficiency, high rate of removal of contaminants, and easy as well as rapid separation of adsorbent from solution via external magnetic field. Such facile separation is essential to improve the operation efficiency. In addition, reuse of nanoparticles would substantially reduce the treatment cost. In this review article, we have attempted to summarize recent studies that address the preconcentration methods of pesticide residue analysis and removal of toxic contaminants from aquatic systems using magnetic core–shell nanoparticles as adsorbents.  相似文献   

12.
崔嘉轩  刘璐  李东浩  朴相范 《色谱》2021,39(11):1157-1170
微纳尺度物质的分离和分选在精准医学、材料科学和单细胞分析等研究中至关重要.精准、高效和快速的分离微纳尺度物质能够为癌症的早期诊断、生物样品检测和细胞筛选提供重要帮助,其中基于外加场分离技术的分离微纳尺度物质因可以对微纳尺度物质高效在线分离和分选,被广泛应用于微纳米颗粒、外泌体以及生物细胞的分离工作中,而目前多数外加场分...  相似文献   

13.
Pt微粒修饰纳米纤维聚苯胺电极对甲醇氧化电催化   总被引:9,自引:0,他引:9  
以脉冲电流法制备的纳米纤维状聚苯胺(PANI)为Pt催化剂载体,用它制备了甲醇阳极氧化的催化电极Pt/(nano-fibular PANI).研究结果表明, Pt/(nano-fibular PANI)电极对甲醇氧化具有很好的电催化活性,并有协同催化作用.在相同的Pt载量条件下, Pt/(nano-fibular PANI)电极比Pt微粒修饰的颗粒状聚苯胺电极Pt/(granular PANI)具有更好的电催化活性.此外, Pt的电沉积修饰方法同样影响Pt/(nano-fibular PANI)电极对甲醇氧化的催化活性.脉冲电流法沉积Pt形成的复合电极较循环伏安法电沉积得到的Pt复合电极具有更优异的催化活性.  相似文献   

14.
A magnetic solid‐phase extraction sorbent of polypyrrole/silica/magnetite nanoparticles was successfully synthesized and applied for the extraction and preconcentration of sulfonamides in water samples. The magnetite nanoparticles provided a simple and fast separation method for the analytes in water samples. The silica coating increased the surface area that helped to increase the polypyrrole layer. The polypyrrole‐coated silica provided a high extraction efficiency due to the π–π and hydrophobic interactions between the polypyrrole and sulfonamides. Several parameters that affected the extraction efficiencies, i.e. the amount of sorbent, pH of the sample, extraction time, extraction temperature, ionic strength, and desorption conditions were investigated. Under the optimal conditions, the method was linear over the range of 0.30–200 μg/L for sulfadiazine and sulfamerazine, and 1.0–200 μg/L for sulfamethazine and sulfamonomethoxine. The limit of detection was 0.30 μg/L for sulfadiazine and sulfamerazine and 1.0 μg/L for sulfamethazine and sulfamonomethoxine. This simple and rapid method was successfully applied to efficiently extract sulfonamides from water samples. It showed a high extraction efficiency for all tested sulfonamides, and the recoveries were in the range of 86.7–99.7% with relative standard deviations of < 6%.  相似文献   

15.
Over bimetallic Au/Cu catalyst supported on magnetic Fe3O4 nanoparticles, water-mediated bromamine acid could be selectively converted into 4,4'-diamino-1,1'-dianthraquinonyl-3,3'-disulfonic acid (DAS) with a yield of 88.67%. The magnetic catalyst could be readily separated and reused.  相似文献   

16.
Aluminum is one of the most toxic metals causing a variety of neurologic diseases, especially Alzheimer's disease. It is impossible to avoid contact with aluminum because of its existence in food to medications. Therefore, removal of aluminum from the blood or wastewater is urgently important. The cost-effective and easy-to-prepare adsorbents are needed to get efficient aluminum removal. For that purpose, the poly(2-hydroxyethylmethacrylate-co-acrylic acid), poly(HEMA-co-AA), microparticles was synthesized to remove aluminum in a very short interaction time. The achievement of the desired polymeric structure was confirmed via Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM), etc. Additionally, particle features such as swelling ratio, size, and surface area were determined. The microparticles synthesized in this study have been determined with very good adsorption capacity even in small aluminum concentrations.  相似文献   

17.
Ag/ZnO metal-semiconductor nanocomposites with hierarchical micro/nanostructure have been prepared by the hydrothermal synthesis in the presence of bovine serum albumin (BSA). The results suggest that this biomolecule-assisted hydrothermal method is an efficient route for the fabrication of Ag/ZnO nanocomposites by using BSA both a shape controller and a reducing agent of Ag+ ions. Moreover, Ag nanoparticles on the ZnO act as electron sinks, improving the separation of photogenerated electrons and holes, increasing the surface hydroxyl contents of ZnO, facilitating trapping the photoinduced electrons and holes to form more active hydroxyl radicals, and thus, enhancing the photocatalytic efficiency of ZnO. This is a good example for the organic combination of green chemistry and functional materials.  相似文献   

18.
Mixing a small amount of magnetic beads and regents with large volume samples evenly in microcavities of a microfluidic chip is always the key step for the application of microfluidic technology in the field of magnetophoresis analysis. This article proposes a microfluidic chip for DNA extraction by magnetophoresis, which relies on bubble rising to generate turbulence and microvortices of various sizes to mix magnetic beads with samples uniformly. The construction and working principle of the microfluidic chip are introduced. CFD simulations are conducted when magnetic beads and samples are irritated by the generation of gas bubbles with the variation of supply pressures. The whole mixing process in the microfluidic chip is observed through a high-speed camera and a microfluidic system when the gas bubbles are generated continuously. The influence of supply pressure on the mixing characteristics of the microfluidic chip is investigated and discussed with both simulation and experiments. Compared with magnetic mixing, bubble mixing can avoid the magnetic beads gather phenomenon caused by magnetic forces and provide a rapid and high efficient solution to realize mixing small amount of regents in large volume samples in a certain order without complex moving structures and operations in a chip. Two applications of mixing with the proposed microfluidic chip are also carried out and discussed.  相似文献   

19.
A magnetic sensor for detection of Pb~(2+) has been developed based on Fe/Fe_3O_4 nanoparticles modified by3-(3,4-dihydroxyphenyl)propionic acid(DHCA). The carboxyl groups of DHCA have a strong affinity to coordination behavior of Pb~(2+) thus inducing the transformation of Fe/Fe_3O_4 nanoparticles from a dispersed to an aggregated state with a corresponding decrease, then increase in transverse relaxation time(T_2) of the surrounding water protons. Upon addition of the different concentrations of Pb~(2+) to an aq. solution of DHCA functionalized Fe/Fe_3O_4 nanoparticles(DHCA-Fe/Fe_3O_4 NPs)([Fe] = 90 mmol/L), the change of T_2 values display a good linear relationship with the concentration of Pb~(2+) from 40 μmol/L to 100 μmol/L and from 130 μmol/L to 200 μmol/L, respectively. Owing to the especially strong interaction between DHCA and Pb~(2+), DHCA-Fe/Fe_3O_4 NPs exhibited a high selectivity over other metal ions.  相似文献   

20.
Fe3O4 superparamagnetic nanoparticles with various functionalities were synthesized using a chemical co-precipitation method and used to demonstrate their analytical applications for protein separation of protein and metal ion extraction. The chemically inert silica layer coated with tetraethoxysilane (TEOS) protected the Fe3O4 core from a chemical attack and allowed the nanoparticles to be well dispersed in an aqueous solution. Particularly, the beads were resistant to an acidic solution with a pH ≥ 3. The amino (− NH2) groups were covalently bonded to the silica coated Fe3O4, and then the carboxyl (− COOH) groups were functionalized to the nanoparticle surface through the reaction of − NH2 and glutaric anhydride. The synthesized magnetic nanoparticles (MNP) were characterized using FT-IR, FE-TEM, XRD, and SQUID. The presence of functional groups on the nano beads was confirmed using molecular fluorescence spectrometry. For the presence of the amino (− NH2) groups, FITC was tagged and monitored using an excitation laser with a wavelength of 473 nm and a fluorescence emission of 518 nm. Biotin was immobilized on the MNP and the fluorescent of FITC tagged on avidin was monitored to identify the carboxyl (− COOH) group.The proteins of Cytochrome C (12,000 Da), Rnase B (15,000 Da), and Myoglobin (17,000 Da) were separated using the MNP functionalized with the carboxyl (− COOH) group and identified using MALDI-TOF-MS. Amino benzyl EDTA (ethylenediaminetetraacetic acid) was immobilized on the MNP for metal–EDTA complexation to use the synthesized magnetic particles to extract metal ions for environmental and clinical application. Cu, Cd, Co, and Pb ions were extracted from ∼ 10 ng/mL solutions in the batch-type procedure and the extraction efficiency was > 90% at a pH of 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号