首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a method for the quantitation of glucagon from rat plasma by protein precipitation and LC/MS. No internal standard was used, as a labeled standard was not available and similar peptides did not show comparable extraction characteristics to glucagon. The LC system included a Keystone C18, 300 A pore size column; a linear gradient was used with a mobile phase consisting of water and acetonitrile, each with 0.2% acetic acid and 0.02% trifluoroacetic acid. Glucagon was detected with the mass spectrometer in positive ion mode monitoring the 4+ charge state at m/z 871.7. The method had an approximated limit of detection of 1 ng/mL. The lower limit of quantitation (LLOQ) was 25 ng/mL (7.2 fmol/mL), which could be reduced with an appropriate internal standard. External calibration was used and calibration curves were found to be linear over the range from 25 to 1000 ng/mL (7.2 to 290 fmol/mL). The method showed a high degree of precision and accuracy both within and between runs at four validation points, including the LLOQ.  相似文献   

2.
The present study documents development and validation of a novel approach for determination of 23 perfluorinated alkylated substances (PFASs) in food of animal origin represented by milk and fish. The list of target analytes comprises four classes of PFASs, both ionic and non-ionic: 11 perfluorocarboxylic acids (PFCAs), 4 perfluorosulphonic acids (PFSAs), 5 perfluorosulphonamides (FOSAs) and 3 perfluorophosphonic acids (PFPAs). Fast sample preparation procedure is based on an extraction of target analytes with acetonitrile (MeCN) and their transfer (supported by inorganic salts and acidification) into the organic phase. Removing of matrix co-extracts by a simple dispersive solid phase extraction (SPE) employing ENVI-Carb and C18 sorbents is followed by an efficient sample pre-concentration performed by acetonitrile evaporation and subsequent dilution of residue in a small volume of methanol (matrix equivalent in the final extracts was 16 and 8 g mL(-1), for milk and fish respectively). Using modern instrumentation consisting of ultra-high performance liquid chromatography (UHPLC) hyphenated with a tandem mass spectrometer (MS/MS), limits of quantification (LOQs) as low as 0.001-0.006 μg kg(-1) for milk and 0.002-0.013 μg kg(-1) for fish can be achieved. Under these conditions, a wide spectrum of PFASs, including minor representatives, can be determined which enables collecting data required for human exposure studies. The pilot study employing the new method for examination of milk and canned fish samples was realized. Whereas in majority of canned fish products a wide spectrum of PFCAs, perfluorooctanesulphonic acid (PFOS) and perfluoro-1-octanesulphonamide (PFOSA) was detected, only in a few milk samples very low concentrations (LOQ levels) of PFOS and perfluorooctansulphonic acid (PFDS) were found.  相似文献   

3.
A highly sensitive and rapid ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for simultaneous quantification of the four main bioactive compounds, i.e. baicalin, baicalein, wogonoside and wogonin, in rat plasma after oral administration of Radix Scutellariae extract. Clarithromycin was used as an internal standard (IS). Plasma samples were processed by protein precipitation with methanol. The separation was performed on an Acquity BEH C18 column (100 × 2.1 mm, 1.7 μm) at a flow rate of 0.4 mL/min, using 0.1% formic acid–acetonitrile as mobile phase. The MS/MS ion transit ions monitored were 447.5 → 270.1 for baicalin, 270.1 → 168.1 for baicalein, 461.2 → 284.0 for wogonoside, 284.2 → 168.1 for wogonin and 748.5 → 158.1 for IS. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantification (LLOQ) achieved was 1.13 ng/mL for baicalin, 1.23 ng/mL for baicalein, 0.82 ng/mL for wogonoside and 0.36 ng/mL for wogonin. The calibration curves obtained were linear (r > 0.99) over the concentration range ~ 1–1000 ng/mL. The intra‐ and inter‐day precision was <15% and the accuracy was within ±14.7%. After validation, this method was successfully applied to a pharmacokinetic study of Radix Scutellariae extract.  相似文献   

4.
We present a simple and robust LC–MS/MS assay for the simultaneous quantitation of an antibody cocktail of trastuzumab and pertuzumab in monkey serum. The LC–MS/MS method saved costs, decreased the analysis time, and reduced quantitative times relative to the traditional ligand-binding assays. The serum samples were digested with trypsin at 50°C for 60 min after methanol precipitation, ammonium bicarbonate denaturation, dithiothreitol reduction, and iodoacetamide alkylation. The tryptic peptides were chromatographically separated using a C18 column (2.1 × 50 mm, 2.6 μm) with mobile phases of 0.1% formic acid in water and acetonitrile. The other monoclonal antibody, infliximab, was used as internal standards to minimize the variability during sample processing and detection. A unique peptide for each monoclonal antibody was simultaneously quantified using LC–MS/MS in the multiple reaction monitoring mode. Calibration curves were linear from 2.0 to 400 μg/mL. The intra- and inter-assay precision (%CV) was within 8.9 and 7.4% (except 10.4 and 15.1% for lower limit of quantitation), respectively, and the accuracy (%Dev) was within ±13.1%. The other validation parameters were evaluated, and all results met the acceptance criteria of the international guiding principles. Finally, the method was successfully applied to a pharmacokinetics study after a single-dose intravenous drip administration to cynomolgus monkeys.  相似文献   

5.
Brazilin is a major homoisoflavonoid component isolated from the dried heartwood of traditional Chinese medicine Caesalpinia sappan L., which is a natural red pigment used for histological staining. Herein a sensitive, specific and rapid analytical LC‐MS/MS method was established and validated for brazilin in rat plasma. After a simple step of protein precipitation using acetonitrile, plasma samples were analyzed using an LC‐MS/MS system. Brazilin and the IS (protosappanin B) were separated on a Diamonsil C18 analytical column (150 × 4.6 mm, 5 µm) using a mixture of water and 10 mm ammonium acetate in methanol (20:80, v/v) as mobile phase at a flow rate of 0.6 mL/min. The method was sensitive with a lower limit of quantitation of 10.0 ng/mL, with good linearity (r2 ≥ 0.99) over the linear range 10.0–5000 ng/mL. All the validation data, such as accuracy and precision, matrix effect, extraction recovery and stability tests were within the required limits. The assay method was successfully applied to evaluate the pharmacokinetics parameters of brazilin after an oral dose of 100 mg/kg brazilin in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Chloramine-T is an effective drug for controlling fish mortality caused by bacterial gill disease. As part of the data required for approval of chloramine-T use in aquaculture, depletion of the chloramine-T marker residue (para-toluenesulfonamide; p-TSA) from edible fillet tissue of fish must be characterized. Declaration of p-TSA as the marker residue for chloramine-T in rainbow trout was based on total residue depletion studies using a method that used time consuming and cumbersome techniques. A simple and robust method recently developed is being proposed as a determinative method for p-TSA in fish fillet tissue. The proposed determinative method was evaluated by comparing accuracy and precision data with U.S. Food and Drug Administration criteria and by bridging the method to the former method for chloramine-T residues. The method accuracy and precision fulfilled the criteria for determinative methods; accuracy was 92.6, 93.4, and 94.6% with samples fortified at 0.5X, 1X, and 2X the expected 1000 ng/g tolerance limit for p-TSA, respectively. Method precision with tissue containing incurred p-TSA at a nominal concentration of 1000 ng/g ranged from 0.80 to 8.4%. The proposed determinative method was successfully bridged with the former method. The concentrations of p-TSA developed with the proposed method were not statistically different at p < 0.05 from p-TSA concentrations developed with the former method.  相似文献   

7.
AQUI-S is a fish anesthetic/sedative that is approved for use in a number of countries throughout the world and has the potential for use in the United States. The active ingredient in AQUI-S is isoeugenol. A method for determining isoeugenol concentrations in edible fillet tissue is needed for regulatory purposes, including surveillance and potential use in studies fulfilling human food safety data requirements if U.S. Food and Drug Administration approval is pursued. A method was developed and evaluated for determining isoeugenol concentrations in fillet tissue using relatively common procedures and equipment. The method produced accurate and precise results with fillet tissue from 10 freshwater fish species. The percentage of isoeugenol recovered from samples fortified with isoeugenol at nominal concentrations of 1, 50, and 100 microg/g for all species was always >80 and <97%. Within-day precision for samples fortified at those same concentrations was < or =10%, and day-to-day precision was < or =4.0%. Method precision with fillet tissue containing biologically incurred isoeugenol was < or =8.1%. There were no or minimal chromatographic interferences in control fillet tissue extracts from 9 of the 10 species. The method detection limits for all but one species ranged from 0.004 to 0.014 microg/g, and the quantitation limits ranged from 0.012 to 0.048 microg/g.  相似文献   

8.
A simple and rapid method was developed for the quantitation of antalarmin from plasma using high performance liquid chromatography coupled with electrospray ionization mass spectrometry (ESI/MS). Separation of antalarmin from interfering compounds was achieved using reversed phase chromatography on a C-8 micro-column with an isocratic mobile phase comprised of 80% acetonitrile, 20% water, and 5 mM triethylamine. Detection by ESI/MS was accomplished in positive ion mode using single ion monitoring of the protonated molecular ions of antalarmin and its 13C2-isotopimer. The area ratio of the integrated peaks of interest in the extracted ion chromatogram was used for quantitation. The lower limit of detection was 1 picogram (pg) and the quantitation showed a linear response up to 4 nanograms loaded on column. To achieve acceptable accuracy at or around the limit of quantitation of 20 pg, a 1/x weighting was applied to the calibration data. Accuracy and precision variation for intra and inter-day validation were below the acceptable limit (15%) for pharmacokinetic studies.  相似文献   

9.
UHPLC-MS/MS method using BEH C18 analytical column was developed for the separation and quantitation of 12 phenolic compounds of Chamomile (Matricaria recutita L.). The separation was accomplished using gradient elution with mobile phase consisting of methanol and formic acid 0.1%. ESI in both positive and negative ion mode was optimized with the aim to reach high sensitivity and selectivity for quantitation using SRM experiment. ESI in negative ion mode was found to be more convenient for quantitative analysis of all phenolics except of chlorogenic acid and kaempherol, which demonstrated better results of linearity, accuracy and precision in ESI positive ion mode. The results of method validation confirmed, that developed UHPLC-MS/MS method was convenient and reliable for the determination of phenolic compounds in Chamomile extracts with linearity >0.9982, accuracy within 76.7-126.7% and precision within 2.2-12.7% at three spiked concentration levels. Method sensitivity expressed as LOQ was typically 5-20 nmol/l.Extracts of Chamomile flowers and Chamomile tea were subjected to UHPLC-MS/MS analysis. The most abundant phenolic compounds in both Chamomile flowers and Chamomile tea extracts were chlorogenic acid, umbelliferone, apigenin and apigenin-7-glucoside. In Chamomile tea extracts there was greater abundance of flavonoid glycosides such as rutin or quercitrin, while the aglycone apigenin and its glycoside were present in lower amount.  相似文献   

10.
建立了超高效液相色谱-串联质谱(UPLC- MS/MS)测定食品包装材料中全氟辛烷磺酸盐(PFOS)的方法.采用乙腈作为溶剂,加速溶剂提取法提取食品包装材料中的PFOS.色谱条件:ACQUITY UPLC BEH C18色谱柱(1.7 μm,2.1 mm×50 mm);柱温:30 ℃;流动相:乙腈/水,梯度洗脱;流速:0.2 mL/min;经UPLC分离后用多级反应监测(MRM)方式测定.用2个子离子的相对丰度定性, 外标法定量.PFOS在0.005~0.500 μg/mL范围内线性良好(R2=0.999),PFOS的回收率为90.0%~101.6%,相对标准偏差RSD为1.5%~3.5%.方法检出限为0.1 μg/m2(S/N≥3).  相似文献   

11.
A sensitive and selective liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the determination of sodium cromoglycate (SCG) in human plasma after a nasal dose of 10.4 mg sodium cromoglycate nasal spray, using pravastatin sodium as the internal standard. The method was validated over a linear range of 0.300-20.0 ng/mL. SCG and I.S. were extracted from 1.0 mL of heparinized plasma by C(18) solid-phase extraction cartridges using methanol as eluting solvent. The dried residue was reconstituted with 100 microL of mobile phase, and 10 microL was injected onto the LC-MS/MS system. Chromatographic separation was achieved on a C(18) column (250 x 4.6 mm i.d., 5 microm particle size) with a mobile phase of methanol-acetonitrile-water (containing 2 mmol/L ammonium acetate; 42.5:42.5:15, v/v/v) at a flow rate of 0.4 mL/min. The analytes were detected with a triple quad LC-MS/MS using ESI with positive ionization. Ions monitored in the multiple reaction monitoring mode were m/z 469.0 (precursor ion) to m/z 245.0 (product ion) for SCG and m/z 447.2 (precursor ion) to m/z327.1 (product ion) for pravastatin sodium (internal standard) The average recovery of SCG from human plasma was 94.88% and the lower limit of quantitation was 0.3 ng/mL. Results from a 3-day validation study demonstrated excellent precision and accuracy across the calibration range of 0.3-20 ng/mL. The method was successfully applied to the pharmacokinetic study of SCG in healthy Chinese volunteers. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

12.
An LC–MS/MS‐based bioanalytical method has been developed to measure the concentration of L‐threonate at its endogenous level in human plasma. Following isotope dilution and protein precipitation, the samples were acetylated and chromatographed under reversed‐phase conditions for baseline separation of the derivatized L‐threonate and its stereoisomer D‐erythronate. The method was assessed by a fit‐for‐purpose validation with a calibration range from 100 to 10,000 ng/mL. The intra‐run coefficients of variation (CVs) were <3.6% and the inter‐run CV was 3.2% for the QC samples at endogenous level. At the lower limit of quantitation, the intra‐run CV was 6.1% and the average inaccuracy was ?1.4%. This method provides an efficient and reliable quantitation of L‐threonate and could be useful to certain biomarker investigators.  相似文献   

13.
A method was developed for determining benzocaine and N-acetylbenzocaine concentrations in fillet tissue of rainbow trout. The method involves extracting the analytes with acetonitrile, removing lipids or hydrophobic compounds from the extract with hexane, and providing additional clean-up with solid-phase extraction techniques. Analyte concentrations are determined using reversed-phase high-performance liquid chromatographic techniques with an isocratic mobile phase and UV detection. The accuracy (range, 92 to 121%), precision (R.S.D., < 14%), and sensitivity (method quantitation limit, < 24 ng/g) for each analyte indicate the usefulness of this method for studies characterizing the depletion of benzocaine residues from fish exposed to benzocaine.  相似文献   

14.
A method for the determination of perfluorinated compounds (PFCs) in various water and biological tissue samples was developed and validated. The contents of selected PFCs (i.e., perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA) and perfluorodecanoate (PFDA)) in water samples were extracted by the C(18) solid-phase extraction (SPE). The biological tissue samples (frozen-dried fish and oysters) were simply extracted by liquid-solid extraction with MTBE and adding tetrabutylammonium hydrogensulfate (TBA) as an ion-pairing reagent. The analytes were then identified and quantitated by liquid chromatography-ion trap negative electrospray mass spectrometry (LC-ESI ion-trap-MS). Limits of quantitation (LOQ) were established between 0.5 and 6 ng/l in 250 ml of water sample, while 5-50 ng/g (dry weight) for biological tissue sample. Intrabatch and interbatch precision with their accuracy at two concentration levels were also investigated. Precision for these three PFCs, as indicated by RSD, proved to be less than 11 and 17%, respectively. The total contents of PFOA, PFOS and PFDA were detected in concentrations of up to 400 ng/l in various water samples, while up to 1,100 ng/g in fish and oyster samples. PFOA and PFDA was the major PFCs detected in water samples and biological tissue samples, respectively.  相似文献   

15.
Amino acids in biological fluids have previously been shown to be detectable using liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) with perfluorinated acids as ion-pairing agents. To date, these studies have used precursor mass, retention time and tandem mass spectrometry (MS/MS) to identify and quantify amino acids. While this is a potentially powerful technique, we sought to adapt the method to time-of-flight (TOF)MS. A new application of a recently described liquid chromatographic separation method was coupled with TOFMS to employ accurate mass for qualitative identification; resulting in additional qualitative data not available with standard single quadrupole data. In the current study, we evaluated 25 physiological amino acids and one dipeptide that are routinely quantified in human plasma. Accuracy and precision of the method was evaluated by spiking human plasma with a mix of the 25 amino acids; in addition, the inclusion of a cation-exchange cleanup step was evaluated. The calibration curves were linear over a range from 1.56 to 400 microM. The dynamic range was found to be within physiological levels for all amino acids analyzed. Accuracy and precision for most of the amino acids was between 80-120% spike recovery and <10% relative standard deviation (RSD). The LC/MS technique described in this study relies on mass accuracy and is suitable for the quantitation of free amino acids in plasma.  相似文献   

16.
We present a method for the quantitation of motilin from rat plasma by protein precipitation and liquid chromatography/mass spectrometry (LC/MS). Using external calibration, the method was linear over the concentration range 10-1000 ng/mL with an initial sample volume of 150 microL. The LC system included a C(18) column with a 300 A pore size. A linear gradient was used with a mobile phase consisting of water and acetonitrile, each with 0.2% acetic acid and 0.02% trifluoroacetic acid. Motilin was detected with the mass spectrometer in positive ion mode monitoring the 4+ charge state at m/z 675.5. The approximated limit of detection was less than 1 ng/mL and the lower limit of quantitation (LLOQ) was 10 ng/mL. The method showed a high degree of precision and accuracy both within and between runs at five validation points, including the LLOQ.  相似文献   

17.
Buparlisib is a selective phosphoinositide 3 kinase inhibitor currently evaluated in clinical trials. We developed and validated an LC–MS/MS coupled with a one-step protein precipitation extraction method for the quantitation of buparlisib in rat plasma. After protein precipitation with acetonitrile, the plasma sample was analyzed using a Cortecs UPLC C18 column, with acetonitrile–0.1% formic acid as the mobile phase system. Mass spectrometric detection was conducted in positive ionization mode, with target quantitative ion pair of m/z 411.2 → 367.2 for buparlisib. The calibration curve showed good linearity (1.0–3000 ng/ml), with acceptable accuracy (RE ranging from −6.2 to 5.9%) and precision (RSD within 8.2%) values at quality control concentrations. Extraction recovery from plasma was 80.9–88.7% and the matrix effect was negligible (92.6–95.2%). The validated method presented a simple quantification method of buparlisib in detail and utilized it for a pharmacokinetic study at three dose concentrations after oral administration in Wistar rats.  相似文献   

18.
A simple confirmatory method for the determination of spiramycin and its metabolite neospiramycin in raw milk using LC ESI MS/MS is presented. Macrolide residues in raw milk were extracted by ACN, and sample extracts were further cleaned up and concentrated using SPE cartridges. Both spiramycin and neospiramycin were protonated in electrospray positive ion mode to form singly and/or doubly charged pseudomolecular ions. Data acquisition was achieved using multiple reaction monitoring, i.e., two transitions, for quantification and confirmation. Matrix‐matched standard calibration curves were utilized to achieve the best accuracy for the method. The method performance was evaluated according to both a conventional validation procedure and a designed experimental result. The measurement uncertainty arising from accuracy and precision was estimated. The method accuracy, expressed as a percentage of an overall recovery, was from 82.1 to 108.8%, and its intermediate precision was less than 20%. LC/ESI‐MS/MS method LODs (S/N ? 3:1) of spiramycin and neospiramycin were less than 1.0 μg/kg.  相似文献   

19.
建立了用高效液相色谱-串联质谱(HPLC/MS/MS)结合快速溶剂萃取测定食品包装材料中全氟辛烷磺酰基化合物(PFOS)的方法。采用乙腈溶剂,快速溶剂提取食品包装材料中的PFOS,提取液经0.2μm有机滤膜过滤后,以V(乙腈)∶V(10 mmol/L乙酸铵溶液)=80∶20为流动相,经HPLC分离后用多级反应监测(MRM)方式测定。用两个子离子的相对丰度定性,外标法定量。PFOS在0.002~0.1μg/mL范围内线性良好(R2=0.998),回收率为93.8%~101%,精密度RSD为1.6%~3.1%,方法检出限为0.4μg/m2(S/N≥10),满足欧盟法规对食品包装材料中PFOS的限量检测要求。方法可用于食品包装材料中PFOS的检测。  相似文献   

20.
In this study, a specific and quick ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method was fully developed and validated for simultaneous measurement of the rat plasma levels of vortioxetine (VOR), Lu AA34443 (the major metabolite of VOR), fluoxetine and its metabolite norfluoxetine with diazepam as the internal standard (IS). After a simple protein precipitation with acetonitrile for sample preparation, the separation of the analytes were performed on an Acquity UPLC BEH C18 (2.1 × 50 mm, 1.7 μm) column, with acetonitrile and 0.1% formic acid in water as mobile phase by gradient elution. The detection was achieved on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via an electrospray ionization source. Good linearity was observed in the calibration curve for each analyte. The data of precision, accuracy, matrix effect, recovery and stability all conformed to the bioanalytical method validation of acceptance criteria of US Food and Drug Administration recommendations. The newly developed UPLC–MS/MS method allowed simultaneous quantification of VOR, fluoxetine and their metabolites for the first time and was successfully applied to a pharmacokinetic study in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号