首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Summary Quantitative analysis in field-flow fractionation is becoming a necessary requirement for routine applications, instrumental optimization and scale-up to preparative separations. The use of detection systems which show complex dependence on sample characteristics (i.e. UV spectrometry) has hindered the application of quantitative methods of analysis in field-flow fractionation. A standardless model, shown valid in flow-through, homogeneous systems, is applied here to a heterogeneous system (dispersed supermicron particles) in field-flow fractionation by single peak area measurements. Absolute analysis in the fractionation of spherical silica particles for high-performance liquid chromatography column packing by gravitational field-flow fractionation with UV-Vis detectors is presented. It has been shown that for such samples extinction coefficients are independent of sample concentration and are determined by the size and density of the particles. The accuracy of such an approach to absolute analysis is discussed. In memory of J. C. Giddings Presented at FFF'95-Fifth International Symposium on Field-Flow Fractionation, Park City, UT, USA, July 10–12 1995.  相似文献   

2.
An improved automated continuous sample introduction system for microfluidic capillary electrophoresis (CE) is described. A sample plate was designed into gear-shaped and was fixed onto the shaft of a step motor. Twenty slotted reservoirs for containing samples and working electrolytes were fabricated on the “gear tooth” of the plate. A single 7.5-cm long Teflon AF-coated silica capillary serves as separation channel, sampling probe, as well as liquid-core waveguide (LCW) for light transmission. Platinum layer deposited on the capillary tip serves as the electrode. Automated continuous sample introduction was achieved by scanning the capillary tip through the slots of reservoirs. The sample was introduced into capillary and separated immediately in the capillary with only about 2-nL gross sample consumption. The laser-induced fluorescence (LIF) method with LCW technique was used for detecting fluorescein isothiocyanate (FITC)-labeled amino acids. With electric-field strength of 320 V/cm for injection and separation, and 1.0-s sample injection time, a mixture of FITC-labeled arginine and leucine was separated with a throughput of 60/h and a carryover of 2.7%.  相似文献   

3.
The purge and trap (P&T) method of analysis has been interfaced with fused silica capillary column gas chromatography. This interfacing has been accomplished without splitting the P&T trap desorption carrier gas. Thus, 100% of the purged compounds are transferred to the column. The analytes are cryofocussed on the column using whole column cryotrapping (WCC) at ?80°C. The resulting P&T/WCC procedure is extremely well-suited to the analysis of trace purgeable aqueous organic compounds. Samples and standards containing a variety of aromatic standard compounds were analyzed. The standards included benzene, toluene, ethylbenzene, xylenes, C3-C4-benzenes, and naphthalene, as well as three P&T internal standard compounds. Chromatographic peak widths were uniformly less than 6 s at the base and excellent precision was obtained in the relative retention time data for all compounds. The chromatogram of a groundwater sample contaminated with aromatic gasoline compounds is also presented. Since P&T/WCC works well with fused silica capillary columns, the full sensitivity and chromatographic efficiency of capillary gas chromatography is made available to P&T analyses.  相似文献   

4.
孙昭艳 《高分子科学》2014,32(3):255-267
The effect of silica nanoparticles on the morphology of (10/90 wt%) PDMS/PBD blends during the shear induced coalescence of droplets of the minor phase at low shear rate was investigated systematically in situ by using an optical shear technique. Two blending procedures were used: silica nanoparticles were introduced to the blends by pre-blending silica particles first in PDMS dispersed phase (procedure 1) or in PBD matrix phase (procedure 2). Bimodal or unimodal droplet size distributions were observed for the filled blends during coalescence, which depend not so much on the surface characteristics of silica but mainly on blending procedure. For pure (10/90 wt%) PDMS/PBD blend, the droplet size distribution exhibits bimodality during the early coalescence. When silica nanoparticles (hydrophobic and hydrophilic) were added to the blends with procedure l, bimodal droplet size distributions disappear and unimodal droplet size distributions can be maintained during coalescence; the shape of the different peaks is invariably Gaussian. Simultaneously, coalescence of the PDMS droplets was suppressed efficiently by the silica nanoparticles. It was proposed that with this blending procedure the nanoparticles should be mainly kinetically trapped at the interface or in the PDMS dispersed phase, which provides an efficient steric barrier against coalescence of the PDMS dispersed phase. However, bimodal droplet size distributions in the early stage of coalescence still occur when incorporating silica nanoparticles into the blends with procedure 2, and then coalescence of the PDMS droplets cannot be suppressed efficiently by the silica nanoparticles. It was proposed that with this blending protocol the nanoparticles should be mainly located in the PBD matrix phase, which leads to an inefficient steric barrier against coalescence of the PDMS dispersed phase; thus the morphology evolution in these filled blends is similar to that in pure blend and bimodal droplet size distributions can be observed during the early coalescence. These results imply that exploiting non-equilibrium processes by varying preparation protocol may provide an elegant route to regulate the temporal morphology of the filled blends during coalescence.  相似文献   

5.
Hydrophilic pyrogenic silica melt mixed in immiscible polypropylene/poly (ethylene‐co‐vinyl acetate) (PP/EVA) blend was found to migrate from the PP matrix to the EVA dispersed domains and remained confined inside them. Surprisingly, it was shown than silica was also able to migrate from a dispersed PP phase to an EVA matrix but this transfer was slower and not complete. The same silica with a hydrophobic surface treatment moved and accumulated to the blend interface and in PP. The mechanisms from which this migration proceeds are discussed. Whereas self diffusion of the particles was shown to have almost no effect, shear induced movements and collisions with dispersed drops is believed to be the most efficient mechanism. The possible trapping of silica aggregates during droplet–droplet coalescence was impossible to observe but is thought to be a possible additional mechanism. No quantification on the relative importance of the latter phenomenon can be drawn at the moment. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1976–1983, 2008  相似文献   

6.
A non‐specific on‐line method is presented for the extraction and preconcentration of two rare earth elements using a microcartridge containing C18‐derivatized silica particles prior to their analysis by CZE. The microcartridge, named analyte concentrator, was coupled on‐line to the inlet of the separation capillary (fused‐silica (FS) capillary, 75 μm id ×12 cm from the inlet to the microcartidge and 37 cm from the microcartridge to the detector). The reversed‐phase sorbent quantitatively retained gadolinium (Gd) and lanthanum (La) as 2‐(5‐bromo‐2‐pyridylazo)‐5‐diethylaminophenol complexes in the presence of non‐ionic micelles of polyethylene glycol tert‐octylphenyl ether, enabling sample clean‐up and concentration enhancement with minimum sample handling. The rare earth elements chelates were released from the sorbent with methanol and then analyzed by CZE with diode array detection. A background electrolyte of 20 mM sodium tetraborate containing 8% ACN, pH 9.0, was found to be optimal for the separation of metal chelates. The concentration limits of detection were lowered to picogram per liter levels (20 pg/L for La and 80 pg/L for Gd). A 1000‐fold improvement in concentration sensitivity for La‐ and Gd‐2‐(5‐bromo‐2‐pyridylazo)‐5‐diethylaminophenol complexes with respect to CZE without preconcentration was reached.  相似文献   

7.
Using a microfluidic flow-focusing device, monodisperse water droplets in oil were generated and their interface populated by either 1 μm or 500 nm amine modified silica particles suspended in the water phase. The deformation and breakup of these Pickering droplets were studied in both pure extensional flow and combined extensional and shear flow at various capillary numbers using a microfluidic hyperbolic contraction. The shear resulted from droplet confinement and increased with droplet size and position along the hyperbolic contraction. Droplet deformation was found to increase with increasing confinement and capillary number. At low confinements and low capillary numbers, the droplet deformation followed the predictions of theory. For fully confined droplets, where the interface was populated by 1 μm silica particles, the droplet deformation increased precipitously and two tails were observed to form at the rear of the droplet. These tails were similar to those seen for surfactant covered droplets. At a critical capillary number, daughter droplets were observed to stream from these tails. Due to the elasticity of the particle-laden interface, these drops did not return to a spherical shape, but were observed to buckle. Although increases in droplet deformation were observed, no tail streaming occurred for the 500 nm silica particle covered droplets over the range of capillary numbers studied.  相似文献   

8.
Summary: Static mixers (Sulzer Chemtech; SMX) were used to prepare silica/ MMA-co-BA miniemulsions that were polymerized to produce nanocomposite latexes. Acceptable conditions for the formulation of polymerizable nanodroplets were found and subsequently used to produce silica/poly(MMA-co-BA) nanocomposites. The droplet size distribution of the resulting miniemulsions was narrow enough that it could be successfully polymerized. It was found that the droplet size depends on the silica content and increases with increasing the silica concentration. It was also shown that there is a relationship between the droplet size and the viscosity of the dispersed phase. The majority of droplets were nucleated upon polymerization when less than 15% silica was used. However, when the silica content exceeded 15%, the ratio of the number of particles in the final latex to the number of droplets (Np/Nd) increased to value much higher than 1 indicating the occurrence of homogeneous nucleation.  相似文献   

9.
We have used an infrared laser to ablate materials under ambient conditions that were captured in solvent droplets. The droplets were either deposited on a MALDI target for off-line analysis by MALDI time-of-flight mass spectrometry or flow-injected into a nanoelectrospray source of an ion trap mass spectrometer. An infrared optical parametric oscillator (OPO) laser system at 2.94 μm wavelength and approximately 1 mJ pulse energy was focused onto samples for ablation at atmospheric pressure. The ablated material was captured in a solvent droplet 1–2 mm in diameter that was suspended from a silica capillary a few millimeters above the sample target. Once the sample was transferred to the droplet by ablation, the droplet was deposited on a MALDI target. A saturated matrix solution was added to the deposited sample, or in some cases, the suspended capture droplet contained the matrix. Peptide and protein standards were used to assess the effects of the number of IR laser ablation shots, sample to droplet distance, capture droplet size, droplet solvent, and laser pulse energy. Droplet collected samples were also injected into a nanoelectrospray source of an ion trap mass spectrometer with a 500 nL injection loop. It is estimated that pmol quantities of material were transferred to the droplet with an efficiency of approximately 1%. The direct analysis of biological fluids for off-line MALDI and electrospray was demonstrated with blood, milk, and egg. The implications of this IR ablation sample transfer approach for ambient imaging are discussed.  相似文献   

10.
Sol-gel polytetrahydrofuran (poly-THF) coating was developed for high-sensitivity sample preconcentration by capillary microextraction (CME). Parts per quadrillion (ppq) level detection limits were achieved for both polar and nonpolar analytes through sample preconcentration on sol-gel poly-THF coated microextraction capillaries followed by gas chromatography (GC) analysis of the extracted compounds using a flame ionization detector (FID). The sol-gel coating was in situ created on the inner walls of a fused silica capillary using a sol solution containing poly-THF as an organic component, methyltrimethoxysilane (MTMOS) as a sol-gel precursor, trifluoroacetic acid (TFA, 5% water) as a sol-gel catalyst, and hexamethyldisilazane (HMDS) as a deactivating reagent. The sol solution was introduced into a hydrothermally-treated fused silica capillary and the sol-gel reactions were allowed to take place inside the capillary for 60 min. A wall-bonded coating was formed due to the condensation of silanol groups residing on the capillary inner surface with those on the sol-gel network fragments evolving in close vicinity of the capillary walls. Poly-THF is a medium polarity polymer, and was found to be effective in carrying out simultaneous extraction of both polar and nonpolar analytes. Efficient extraction of a wide range of trace analytes from aqueous samples was accomplished using sol-gel poly-THF coated fused silica capillaries for further analysis by GC. The test analytes included polycyclic aromatic hydrocarbons (PAHs), aldehydes, ketones, chlorophenols, and alcohols. To our knowledge, this is the first report on the use of a poly-THF based sol-gel material in analytical microextraction. Sol-gel poly-THF coated CME capillaries showed excellent solvent and thermal stability (>320 degrees C).  相似文献   

11.
As evaporation does not incur energy introduction, the droplet coffee-stain patterning approach is attractive for biochemical tests conducted in the field or in third world environments. A practical strategy uses chemically functionalized microbeads for the coffee stain deposition process. From an application perspective, it will be necessary to minimize the coffee stain deposition time, as evaporation, depending on the volume of the droplet, can be a slow process. The introduction of a porous media will generate a capillary flow (or wicking) that removes any remnant liquid in the droplet, thus permitting it to be done inexpensively and in the field. Using optical profilometry, we were able to establish that polystyrene microspheres developed more copious and defined single ring coffee depositions than silica of the same size and concentration in a suspension. In analyzing the droplet capillary evacuation process with a porous media, we found the liquid bridge formed during the later stages to rupture and leave behind some liquid material for a second stage evaporation process. This was responsible for a two ring structure that was more visible with silica microspheres. A high degree of hysteresis of the contact angle was found to develop at the contact line in which values below 5° could be achieved. Dynamic observations showed the copious and dense packing of polystyrene particles to be more resistant to ring break up from the evacuation flow. Nevertheless, erosion of the back array portions of the ring was evident notwithstanding either type of microsphere used.  相似文献   

12.
Evaporation of a droplet of silica microsphere suspension on a polystyrene and poly(methyl methacrylate) blend film with isolated holes in its surface has been exploited as a means of particles self-assembly. During the retraction of the contact line of the droplet, spontaneous dewetting combined with the strong capillary force pack the silica microspheres into the holes in the polymer surface. Complex aggregates of colloids are formed after being exposed to acetone vapor. The morphology evolution of the underlying polymer film by exposure to acetone solvent vapor is responsible for the complex aggregates of colloids formation.  相似文献   

13.
We present a very simple electrospray unit, a capillary spray cell, for easy analysis of small (10–50 μL) sample aliquots. The sample, e.g., an unfiltered extract, is injected to a small sample cell, made of alumina and containing a short fused silica capillary mounted in its side. By the application of a 5 kV potential between the sample cell and the entrance orifice of a mass spectrometer with an atmospheric pressure interface, the sample is dragged out of the cell at a rate of a few μL/min and an electrospray is generated at the tip of the silica capillary. The capillary spray cell benefits from a high internal diameter (up to 250 μm) and very easy and inexpensive replacement of the capillary, which makes the sprayer well suited for analysis of unfiltered extracts. We demonstrate the direct analysis of extracts from plants and insects. In quantitative measurements using internal standards, a relatively high sensitivity (low ng/mL) is obtained together with good linearity (R2 = 0.998) in the range of 10–1000 ng/mL. The capillary spray cell is also suited for use with field portable mass spectrometers, since no syringe pump or nebulizer gas is needed. Furthermore, the capillary spray cell is easily manufactured by most mechanical workshops.  相似文献   

14.
A capillary electrophoresis (CE) method coupled with electrochemiluminescence (ECL) detection for the analysis of glyphosate (GLY) and its major metabolite aminomethylphosphonic acid (AMPA) is presented. Complete separation of GLY and AMPA was achieved in 8 min using a background electrolyte of 20 mM sodium phosphate (pH 9.0) and a separation voltage of 21 kV. ECL detection was performed with an indium tin oxide (ITO) working electrode bias at 1.6 V (vs. a Pt-wire reference) in a 30 0mM sodium phosphate buffer (pH 8.0) containing 3.5mM Ru(bpy)3 2+ (where bpy=2.2'-bipyridyl). Linear correlation (r>or=0.997) between ECL intensity and analyte concentration was obtained in the ranges 0.169-16.9 and 5.55-111 microg ml(-1) for GLY and AMPA, respectively. The limits of detection (LODs) for GLY and AMPA in water were 0.06 microg ml(-1) and 4.04 microg ml(-1), respectively. The developed method was applied to the analysis of GLY in soybeans. The LOD of GLY in soybean was 0.6 microg g(-1). Total analysis time including sample pretreatment was less than 1h.  相似文献   

15.
The adsorption of two polymers (polydimethylacrylamide and polydiethylacrylamide) on the inner surface of a fused silica of capillary (or wafer) was investigated by means of atomic force microscopy (AFM), multi-angle laser light scattering (MALLS) technique, and by measuring the electroosmotic flow (EOF) and contact angle. The AFM images showed that PDMA and PDEA tightly adsorbed on the fused silica surface and formed stable coatings. The contact angle data demonstrated that the polymer-adsorbed coatings have different hydrophobicities, which are related to the structures of the polymers. The adsorbing capability and stability of the adsorption coating, perhaps, were mainly dependent on the hydrogen bond force between oxygen atom on the carbonyl group of polymers and the hydroxyl group of the silica surface, and the hydrophobic nature of polymers. Our data also illustrated that the polymer-adsorbed coatings efficiently suppressed the EOF and the adsorption of DNA fragments on the capillary surface. These polymers were successfully used as sieving media in capillary electrophoresis of DNA fragments and detection of single point mutation of C677T from human methylenetetrahydrofolate reductase (MTHFR) gene.  相似文献   

16.
This paper demonstrates a simple and easy setting up of a fused‐silica capillary‐assembled microfluidic system (μCE). This system incorporates a split‐flow pressure injection of the sample into a microfluidic system made from PDMS and a short (~20 cm) length of fused‐silica capillary as a separation unit. The on‐capillary detection was carried out by fiber optic spectrometry. A mixture of six cephalosporin antibiotics was separated in the μCE system and the obtained results were compared to those achievable by conventional CE. The six components could be separated within 8.5 min with the number of theoretical plates around 10 000.  相似文献   

17.
In this study, combination of capillary isoelectric focusing (CIEF) in tapered fused silica (FS) capillary with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is presented as an efficient approach for unambiguous identification of probiotic bacteria in real sample. For this purpose, bacteria within genus Lactobacillus were selected as model bioanalytes and cow's milk was selected as a biological sample. CIEF analysis of both the cultivated bacteria and the bacteria in the milk was optimized and isoelectric points characterizing the examined bacteria were subsequently determined independently of the bacterial sample origin. The use of tapered FS capillary significantly enhanced the separation capacity and efficiency of the CIEF analyses performed. In addition, the cell number injected into the tapered FS capillary was quantified and an excellent linearity of the calibration curves was achieved which enabled quantitative analysis of the bacteria by CIEF with UV detection. The minimum detectable number of bacterial cells was 2 × 106 mL−1. Finally, cow's milk spiked with the selected bacterium was analyzed by CIEF in tapered FS capillary, the focused and detected bacterial cells were collected from the capillary, deposited onto the cultivation medium, and identified using MALDI-TOF MS afterward. Our results have revealed that the proposed procedure can be advantageously used for unambiguous identification of probiotic bacteria in a real sample.  相似文献   

18.
The influence of some variables (concentration, intensity, and time) of ultrasonication on the mean particle size is determined by ultracentrifugation and capillary viscosimetry. For the fused silica Aerosil 200® under optimal conditions only an aggregate radius of 23 nm is achieved. That means an irreversible fused aggregate of about 21 primary particles which contains 60% v/v of immobilized water.  相似文献   

19.
The performance of dynamic double‐coated fused‐silica capillaries with Polybrene and chondroitin sulfate A has been compared with uncoated fused‐silica capillaries for the determination of recombinant human growth factor (somatropin) charge variants. The separations were carried out under the same electrophoretic conditions as described in the European Pharmacopoeia, i.e. at pH 6.0 and 30°C. The coating significantly reduced the interactions between the proteins and the surface of the fused‐silica capillary. The first five separations performed in a new bare fused‐silica capillary were discarded because of very poor separation performance as a result of protein–surface interactions. There was an approximate twofold increase in the interday migration time precision (%RSD ≤ 6.5%) in the double‐coated capillaries. The method was successfully transferred to a multiple CZE mode where two samples were analyzed in a single electrophoretic run. The average purity of somatropin certified reference standard was 98.0% (%RSD ≤ 0.3%) determined by using uncoated and coated capillaries.  相似文献   

20.
荧光团杂化纳米SiO2微球作为生物标记探针的应用研究   总被引:4,自引:0,他引:4  
近年来 ,无机发光量子点[1,2 ] 、荧光纳米乳液微球[3 ,4 ] 及发光团掺杂 Si O2 纳米粒子[5] 等纳米荧光探针的出现 ,为生物标记提供了新的发展领域 .将有机染料以共价方式包埋在 Si O2 中所得的复合材料具有独特的光学性质 ,然而其在生物标记方面的应用并未得到重视[6 ,7] .本实验通过控制荧光团修饰的硅烷前体在反相胶束体系中的水解缩合 ,合成了用于生物染色和诊断的高灵敏度、高稳定性的新型荧光团杂化纳米 Si O2 微球 ( NFHS微球 ) .在 NFHS微球中 ,荧光团以共价方式地均匀分散在 Si O2 网络结构中 ,避免了与外界体系中溶解氧的…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号